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Small-scale wind stress curl (WSC)

Chelton et al. 2004, Science

4-year average



Small-scale wind stress curl (WSC)

� Persistent small-scale WSC : fronts, currents, orography (e.g., tall islands).

� Ocean dynamical response?

Chelton et al. 2004, Science

4-year average

� Patterns : dipoles, monopoles, bands, etc.



� Trade-wind blocking by Hawaii mountains → WSC dipoles .

Chelton et al. 2004, Science

4-year average

Yoshida et al. 2010, JGR

8.5-year average

� Dipole in Big Island lee drives HLCC via Sverdrup dynamics (e.g., Xie et al. 2001, Science).

Ocean response: example of the Hawaiian Lee Countercurrent (HLCC)



HLCC: curl-driven zonal jet

Chavanne et al. 2002, CJRS

� WSC drives Ekman pumping / suction.

� Thermocline is lifted / depressed.

� Cyclonic / anticyclonic eddies (e.g., Calil 
et al. 2008, DSR).

� Rossby waves propagate anomalies 
(e.g., Sasaki et al. 2010, OD).
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Sverdrup Balance

� Vorticity produced by vortex stretching + 
planetary vorticity + turbulent stress .

� Barotropic vorticity equation (flat 
bottom): vortex stretching vanishes.

� Meridional transport driven by WSC (at 
steady state).
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Ekman pumping

Barotropic Continuity Equation

� Nondivergent barotropic flow .

� Zonal transport to the west . Integration from eastern boundary
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HLCC: wind-forced β-plume

Xie et al. 2001, Science

Island

Curl < 0
V < 0

Curl > 0
V > 0

Cyclonic eddies

Anticyclonic eddies

Western 
boundary

HLCC

NEC

HLC
Qiu et al. 1997, JPO

� β-plume (Rhines 1994, Chaos) = Sverdrup gyre driven by compact vorticity source 
(momentum, heat, mass).

� HLCC = wind-forced β-plume 
(Jia et al. 2011, JGR).

� HLCC: narrow eastward jet embedded 
in broad North Equatorial Current (NEC).

� Elongated double-gyre west of Hawaii.

← Rossby waves

� Other mechanisms : air-sea coupling , island-
induced modified large-scale flow (Qiu Durland 
2002, JPO), mode water intrusions (Sasaki et al. 
2012, JO), etc.

� HLCC advects warm SST → far-field WSC dipole (Xie et al. 2001, Science; Hafner Xie 2003, 
JAS; Sakamoto et al. 2004, GRL; Sasaki Nonaka 2006, GRL, etc.).

Spatial-filtered SST & wind



HLCC early termination

Maximenko et al. 2008, GRL

� Zonal transport should reach western boundary, but 
surface jet does not extend beyond 180ºE (Chavanne et 
al. 2002, CJRS; Yu et al. 2003, GRL). Yu et al. 2003, GRL

Mean surface zonal currents

� Horizontal dissipation by mesoscale eddies → HLCC early termination (Yu et al. 2003).

� Underlying assumption: equivalent-barotropic vertical structure. thdz
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Chavanne et al. 2002, CJRS



� What is the sensitivity of the ocean circulation to the scale 
of the WSC forcing ? HLCC?

Baroclinic β-plumes and the HLCC

� What is the baroclinic structure of β-plumes induced by 
localized WSC? HLCC?

� Are eddies necessary for the early termination of β-plumes? 
HLCC?



Outline

1. Linear baroclinic β-plumes : idealized model and theory

2. HLCC vertical structure : model results and observations

Conclusion



� Constant vertical diffusion + viscosity : κ=10-5m2s-1, ν=10-4m2s-1. 

Idealized wind-forced β-plume: model set-up

� ROMS (Shchepetkin McWilliams 2005, OM): free surface, hydrostatic model, resolves the 
primitive equations using stretched σ-coordinates.

� Idealized subtropical ocean (20ºN - 40ºN, 60º zonal) with flat bottom (H=4000m).

� Uniform initial stratification N2(z) from World Ocean Atlas 2009 (typical of N Pacific gyre). 

� Simulation started from rest and run for 30 years with 20 min time step (20 s for the
barotropic mode). Steady state after 20 years . Outputs are saved every 5 days.

� Surface forcing: localized steady wind vortex in the center of the domain 

→ WSC quasi-monopole (basic physics).

� Linear regime : weak wind τmax=10-5Nm-2.

� Eddy-resolving (1/12º) with 32 vertical levels .



Linear β-plume: steady-state barotropic solution

Wind : steady anticyclonic vortex (R = 40 km)

Meridional transport : Sverdrup balance

ρβ
τ×∇=V

Zonal transport : continuity equation
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, ρ = 1025 kg.L-1

β ≈ 1.98 10-11 s-1m-1

, xe ≈ 2890 km

� Good agreement between analytical and numerical solutions.

� 1 anticyclonic cell (2 jets) + 2 weak cyclonic cells = 2+2 x-independent zonal jets .
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Linear β-plume: Vertical structure

� In contrast with barotropic flow, surface jets decay westward .

� Deepening of β-plume lower boundary + 
emergence of deep flow far away from forcing .

� Zonal change in baroclinic structure: damping of baroclinic Rossby waves?
(especially higher-order modes)

UUUUdeepdeepdeepdeep

30.3°N
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30.3°N
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Linear β-plume: Vertical mixing effects

� Zonal scales are smaller when vertical mixing is inc reased .

� Usually vertical viscosity effects are very weak. Why are they dominant here?

ν x10x10x10x10κ x10x10x10x10 controlcontrolcontrolcontrol

� Stronger sensitivity to viscosity compared to diffu sion .



Linear continuously-stratified (LCS) model
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Linearized primitive equations (McCreary 1981, PTRA)

Vertical mode decomposition
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Linear continuously-stratified (LCS) model (2)
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Steady-state baroclinic mode primitive equations (McCreary 1981, PTRA)

Steady-state baroclinic mode quasi-geostrophic potential vorticity equation
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Curl (viscosity)Curl (viscosity)Curl (viscosity)Curl (viscosity)Vortex Vortex Vortex Vortex 
stretchingstretchingstretchingstretching

β effect WSC



Linear continuously-stratified (LCS) model (3)

� For large-scale flow , R>>Rn π√σ/2 and Mn>>1:
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� For small-scale WSC , R<<Rn π√σ/2 and Mn<<1:

⇒
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Vortex Vortex Vortex Vortex 
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� Ratio of κ-term [Vortex stretching] over ν-term [Curl(viscosity)]:



Baroclinic mode damping by viscosity/diffusion

Viscosity vs. Diffusion: dependence on mode number

Even when M1<<1, for n ≥ n0 high enough Mn≥1

� For small-scale WSC , viscosity (diffusion) damps the lower- (higher-) order modes

⇒

� For large-scale flow , diffusion damps all the baroclinic modes

↳ In ROMS, M1 ≈ 0.04 and n0 ≈ 6 explain the stronger sensitivity to viscosity

Viscosity vs. Diffusion: decay length scales

� Viscosity:

� Diffusion:
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� Smaller scales with enhanced mixing.

� Smaller scales for higher-order modes.

� Only Lν varies with R because Curl(viscosity)
acts on vorticity perturbation while Vortex 
stretching acts on pressure perturbation.



Sensitivity to forcing scale

� Baroclinic x-scale increases with WSC y-scale in agreement with theory.

Wind : R x 2 , τmax x 2

controlcontrolcontrolcontrol R x2R x2R x2R x2
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Outline

1. Linear baroclinic β-plumes : idealized model and theory

2. HLCC vertical structure : model results and observations

Conclusion



� KPP vertical mixing scheme (Large et al. 1994, RG). 

Hawaiian Lee Countercurrent: model and data

� OFES (Masumoto et al. 2004, JES): global ocean model based on GFDL MOM3.

� Study region = (sub)tropical North Pacific Ocean (9ºN - 30ºN, 125ºE - 85ºW). 

� 2 simulations analyzed over 1999-2008 (10 years ): OFES-N (NCEP forcing) and OFES-Q 
(QuikSCAT forcing), similarly to Sasaki Nonaka 2006, GRL. Monthly means are used here.

� Eddy-resolving (1/10º) with 54 vertical levels . Bottom topography is from OCCAM 1/30º.

� Lebedev et al. 2007, IPRC = surface and deep currents estimated from trajectories of 4284 
ARGO floats over 1997-2007 (11 years ).

� Surface velocities = linearly regressed from float coordinates fixed by satellite. 

� Deep velocities estimated from float displacements during submerged phase of the cycle.



HLCC in OFES: NCEP forcing

� HLCC = β-plume forced by WSC dipole around Hawaii.

� Transport is ~ x-independent (at least east of 170ºE).

UUUUtransporttransporttransporttransport

Meridionally highpass filtered

CurlCurlCurlCurl((((τ))))



HLCC in OFES: QuikSCAT forcing

CurlCurlCurlCurl((((τ))))CurlCurlCurlCurl((((τ))))

Meridionally highpass filtered

UUUUtransporttransporttransporttransport

� Forcing scale = smaller => narrower HLCC meridional scale.

� Transport also decays: due to far-field wind or eddy dissipation?



HLCC in OFES: NCEP forcing

� Surface current extends to ~155ºE, but weaker west of ~170ºW .

� Baroclinic flow = NEC + β-plume : surface decay, westward deepening, emergence of deep 
flow.

uuuusurfsurfsurfsurfuuuusurfsurfsurfsurf

uuuuHLCCHLCCHLCCHLCCuuuuHLCCHLCCHLCCHLCC

Meridionally highpass filtered



HLCC in OFES: QuikSCAT forcing

� Surface current decay scale = shorter : consistent with idealized model.

� Baroclinic flow : less consistent with idealized β-plume. Due to eddies and/or far-field wind?

uuuusurfsurfsurfsurf

Meridionally highpass filtered

uuuuHLCCHLCCHLCCHLCC uuuuHLCCHLCCHLCCHLCC

uuuusurfsurfsurfsurf



Transport decay: eddies?

� High EKE along the HLCC axis due to eddies shed in the island lee and generated by 
baroclinic/barotropic instabilities in the far field (Calil et al. 2008, Yoshida et al. 2011, etc.).

� Similar EKE levels in OFES-N/Q (slightly higher in OFES-N) suggest eddies may not be 
responsible for differences in barotropic transport.



Transport decay: Sverdrup flow?

� NCEP WSC favors an ~x-independent transport west of Hawaii, whereas QuikSCAT WSC 
likely contributes to the faster-decaying transport .

OFES-Q

OFES-N Meridionally highpass filtered

� This is likely due to the effect of air-sea interaction in the far field with tilted WSC dipole 
and HLCC . Possibly also contributes to discrepancy with idealized vertical structure .
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HLCC in OFES / observations: viscosity or diffusion?

NCEPNCEPNCEPNCEP QuikSCATQuikSCATQuikSCATQuikSCAT
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Yoshida et al. 2010, JGR

� Estimates derived from observed winds suggest viscosity plays a significant role .

M1 ~ 0.04

n0 ~ 6

(ROMS)

� Wind and mixing in idealized runs are reasonable (perhaps even more than those in OFES).



HLCC in the real ocean?

Argo consistent w/ deepening:

� max near Hawaii @ 0m

� near 145-165ºE @ 1000m

UUUUsurfsurfsurfsurf

OFESOFESOFESOFES----QQQQ

UUUU1000m1000m1000m1000m

UUUUsurfsurfsurfsurf

ArgoArgoArgoArgo

UUUU1000m1000m1000m1000m

OFESOFESOFESOFES----QQQQ

ArgoArgoArgoArgo OFES-Q ≠deep flow increase
but air-sea coupling may be 
poorly represented 

(Chelton Xie 2010)

Caution : scarce / noisy data... 
but is the only available data! 
(perhaps)

Meridionally highpass filtered



Conclusion

� An idealized linear primitive-equation model and an analytical linear 
continuously-stratified model show that for small-scale wind forcing , 
vertical viscosity (and diffusion) damps baroclinic Rossby waves , 
resulting in a β-plume westward thickening with decay of surface 
zonal jets and emergence of deep flow . Barotropic flow is in Sverdrup 
balance and zonal transport is x-independent.

� Zonal change in baroclinic flow occurs over shorter (longer) distances
for smaller (larger) meridional forcing scales , if forcing smaller than 1st

Rossby radius.

� Eddies are not necessary for the early termination of β-plumes.



Conclusion (2)

� High-resolution OGCM simulations suggest that the Hawaiian Lee 
Countercurrent may have baroclinic and barotropic struc tures 
consistent with idealized linear β-plumes . Model surface HLCC also 
has similar sensitivity to scale of WSC in lee of Hawaii. 

� A possible deep extension of HLCC is found for the first time in ARGO 
float trajectory data and in OGCM simulations.

� Specific roles of far-field air-sea interaction and eddy fluxes need to be 
addressed.



abelmadani@dgeo.udec.cl
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Standard error in Argo data @ 0 m

# obs# obs# obs# obs

Std devStd devStd devStd dev

Std errStd errStd errStd err



Standard error in Argo data @ 1000 m

# obs# obs# obs# obs

Std devStd devStd devStd dev

Std errStd errStd errStd err



Transport decay: Sverdrup flow?

� NCEP WSC favors an ~x-independent transport west of Hawaii, whereas QuikSCAT WSC 
likely contributes to the faster-decaying transport .

OFES-Q

OFES-N Meridionally highpass filtered

� This is likely due to the effect of air-sea interaction in the far field with tilted WSC dipole 
and HLCC . Possibly also contributes to discrepancy with idealized vertical structure .
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