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A novel mechanism is proposed for ion neutralization near metal surfaces, whereby a bulk plasmon is emitted
during the electron capture, induced by the presence of the external ion which does not penetrate the metal.
In a semiclassical picture of this mechanism the electrons increase their velocity in the field of the ion until
they surpass the threshold velocity for collective excitation, emitting the plasmon and getting bound to the ion.
Primary evaluations of bulk plasmon transition rates for He+ interacting with Al surfaces indicate that very
close to the image plane the bulk collective channel might become more efficient than the surface plasmon
mode to neutralize the ion.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In recent years a good understanding has been reached for ion neu-
tralization at metal surfaces in the case of H+ ions impinging on alumi-
num under grazing incidence conditions and for kinetic energies up to
100 keV [1,2]. In these collisions, the collective (monopole) surface
mode [3] plays a significant role to obtain a pretty good agreement be-
tween theory and experiments for both the angular distributions (AD)
[1,4] and the corresponding neutral fractions (NF) [2,5] of the final hy-
drogen atoms. Also for low incident energy He+ ions on Al surfaces,
the potential excitation of surface plasmons seems to be at least as im-
portant as the single particle Auger mode to obtain theoretical AD of
final He atoms [6] which are consistent with the experimental ones [7].

Since experimental reports for electron emission from metal sur-
faces like Al or Mg after collisional interactions with He+ ions [8,9]
seem to indicate that both surface and bulk plasmons are excited during
those interactions, we propose in the present work the novel mecha-
nism of ion neutralization at metal surfaces by potential bulk plasmon
emission and compare its corresponding transition rates with those re-
lated to the potential surface plasmon neutralizationmode [6]. The bulk
collective process will take place as long as the potential energy provid-
ed by the empty atomic state of the projectile is larger than the bulk
plasmon energy [8]. The energy difference between the occupied levels
in the conduction band of Al and the empty atomic level of He+ is in the
range (in atomic units) 0.317≤ΔE≤0.747 while the bulk plasmon en-
ergy range for the same metal is 0.552≤Epl≤0.687 [10] so that the
He+ ion provides enough potential energy to excite the bulk plasmon
in Al. This process could contribute to explain the remaining discrepan-
cies between the theoretical results for NF and AD and their
+33 5 4000 2580.
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experimental counterparts found in our dynamical calculations
reported in Ref. [11].

A few comments are in order:

(a) Grazing collisions of interest here ([5] and references therein)
correspond to angles of incidence around 1∘ and energies of a
few keV. Therefore the ions are not expected to penetrate sig-
nificantly the solid so that they cannot excite bulk plasmons di-
rectly. However, potential bulk plasmon neutralization (PBPN)
near metal surfaces can still proceed indirectly by the acceler-
ation of a metal electron (towards the surface) which, in the
field of the external ion, surpasses the electron threshold ve-
locity for collective excitation, emits the bulk plasmon and be-
comes bound to the external ion. (b) It seems important to
note that the PBPN will occur with or without consideration
of the electron gas dispersion which makes it possible the ki-
netic emission of bulk plasmons by charged particles moving
outside a metal surface as shown by Bergara et al. [12]. More-
over, their kinetic emission of bulk plasmons by external ions
is allowed only above a threshold velocity so that for slow
ions which do not penetrate the metal only the PBPN is possi-
ble. For velocities above the threshold, the probability they
obtained decreases strongly with increasing ion surface dis-
tance; something similar occurs for the transition rates of
PBPN according to our present primary calculations. (c) The
PBPN channel should be also possible for He+ ions penetrating
the metal. In that case our proposed mechanism of bulk
plasmon excitation becomes relevant especially in the sub-
threshold regime where it should compete with second order
(or indirect) mechanisms for kinetic plasmon emission, like
the one analyzed by Bocan et al. [13] in which the ion excites
(through binary collisions) valence electrons that are fast
enough to excite plasmons.
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This paper is organized as follows: in Section 2, we present the inter-
action Hamiltonian corresponding to the novel mechanism proposed
here aswell as our description of the electronic wavefunctions. Our pri-
mary evaluation of the corresponding matrix elements and transition
rates is presented in Section 3 while the conclusions are given in
Section 4. Atomic units are used throughout unless otherwise indicated.

2. Theory

2.1. Ion induced electron-bulk plasmon coupling

The ionic background of themetal is represented here by the jellium
model with the jellium occupying the z≤0 half-space. The Fourier rep-
resentation of the Coulomb interaction between a monocharged ion at
rest at a position r0=(0, 0, s) outside the jellium edge (JE) and the elec-
trons of the metal is given by [14–16]

−
Xn
i¼1

1
ri−r0j j ¼ −4π

Xn
i ¼ 1
τ≠0

eiτ⋅ ri−r0ð Þ

τ2
ð1Þ

with ri the coordinates of the metal electrons with respect to the JE as
shown in Fig. 1(a). The constraint τ≠0 takes into account the interac-
tion of the external ionwith the positive background of the solid. Appli-
cation of the Bohm–Pines transformation [17]

eiτ⋅ri ¼ eiτ⋅xi þ ∑
qbqc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πω qð Þ
Vq2

s
G q;pi;−τð ÞĈ qe

i qþτð Þ⋅xi

−∑
qbqc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πω qð Þ
Vq2

s
e−iq⋅xi Ĉ †

qG q;pi;−τð Þeiτ⋅xi
ð2Þ

wherexi andpi are the transformed [17] position andmomentumof the
electron i, respectively , Ĉ †

q and Ĉ q are the creation and annihilation op-
erator for bulk plasmons of momentum q (with qbqc, where qc is the
cut-off value for the plasmon wavevector beyond which the collective
mode decays into electron–hole pairs) and energy ω(q), V is the ele-
mentary solid volume while G q;pi; τð Þ is the operator defined by

G q;pi; τð Þ ¼ 1
ω qð Þ−q⋅ pi þ τð Þ−

1
ω qð Þ−q⋅pi

ð3Þ
Fig. 1. (a). Reference system for an ion at rest at a distance s from the Jellium Edge. Also dr
momentum transfer τ with their corresponding component in cylindrical coordinates (see t
real and imaginary axes (see text).
Application of Eq. (2) into Eq. (1) will give rise to couplings be-
tween bulk plasmons and electrons induced by the ion's field. Indeed,
replacement of the third term of Eq. (2) into Eq. (1), followed by the
application of the Fock–Tani transformation [15,18] and proceeding
along the same lines as those indicated in Ref. [16] allows us to obtain
the interaction Hamiltonian V(a+pl←e) for bulk plasmon induced
ion neutralization at metal surfaces for an ion at rest outside the
metal. Its explicit expression, in second quantized form, is

V aþ pl←eð Þ ¼ Ĉ †
qâ

†
μ q; μ Vj jkh iêk ð4Þ

with â†
μ the creation operator for an atom in the state μ and êk the an-

nihilation operator for electrons with momentum k (with k≤kF,
where kF is the Fermi wavevector). The matrix elements q; μ Vj jkh i
for these transitions are, in coordinate space,

q; μ Vj jkh i ¼ ∫d3rϕ�
μ r−r0ð ÞVe−pl

q;k rð Þ~φk rð Þ ð5Þ

with ϕ�
μ rð Þ the complex conjugate of the atomic wavefunction of the

neutralized ion in the state μ, ~φk rð Þ the wavefunction of the metal
electrons which is orthogonal to the atomic wavefunction and with
Ve−pl
q;k rð Þ the interaction potential, responsible for the collective pro-

cess, given by

Ve−pl
q;k rð Þ ¼ ∑

τ>qc
− 4π

Vτ2
� �

eiτ⋅r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πω qð Þ
Vq2

s
g q;k; τð Þe−iq⋅r

" #
θ −zð Þ ð6Þ

where

g q;k; τð Þ ¼ 1
ω qð Þ−q⋅ kþ τð Þ−

1
ω qð Þ−q⋅k ð7Þ

is a function of the variablesq;k, and τ. The spatial constraint accounted
for by the unit step function θ(−z) in Eq. (6) ensures that the plasmon
excitation occurs when the electrons are inside the metal.

It is straightforward to verify that the singularity of g q;k; τð Þ for
ω qð Þ ¼ q⋅k is related—by conservation of energy and momentum—to
the excitation of plasmons by electrons in the metal (an equivalent
discussion for plasmon excitation by fast ions is given in Ref. [19]). How-
ever, since within the bulk ω(q)≥ωp>qckF (with ωp ¼ 4πneð Þ1=2 the
awn are the electron positions ri, the bulk plasmon momentum wavevector q and the
ext). (b). Contour integration to calculate the integral of Eq. (14) showing the poles on
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plasma frequency where ne is the electron gas density [14,16]) the con-
dition for bulk plasmon excitation by electrons is never met for metals
within the random phase approximation [14] at zero temperature in
the absence of external perturbations. Even more, from Eq. (7) we see
that in the absence of the external perturbation (τ=0) one gets
g q;k; τð Þ ¼ 0 so that Ve−pl

q;k rð Þ vanishes. It is the perturbation produced
by the external ion, represented by themomentum transfer τ, which in-
duces a coupling between electrons and plasmons allowing the collec-
tive excitation. Indeed, the sum on τ>qc contained in Ve−pl

q;k rð Þ allows
the existence of a real singularity of g q;k; τð Þ for ω qð Þ ¼ q⋅ kþ τð Þ
which is the signature for the excitation of a real plasmon. Since the
term preceding the square bracket in Ve−pl

q;k rð Þ corresponds to the
screened Coulomb interaction between the electrons and the external
ion, then in a semiclassical picture of the PBPN mode, the electron is
attracted by the screened field of the ion increasing its momentum
from k to kþ τ (with τ>qc) surpassing the threshold velocity for
plasmon excitation, emitting the plasmon, and getting bound to the ion.

It will become useful to have in mind the general expression of the
transition rate ΓB for the specific case of bulk plasmonmediated neutral-
ization of He+ ions into the ground state of He near Al surfaces. It is
given by

ΓB ¼ 2π ∑
kbkF
qbqc

Mj j2δ εi−εf
� �

ð8aÞ

with the matrix elements M given by

M ¼ ∫d3rϕ�
G r−r0ð ÞVe−pl

q;k rð Þ~φk rð Þ ð8bÞ

where εi and εf are the initial andfinal energies of the interacting system
respectively, ϕG rð Þ is the ground state of the Helium atom near an Al
surface and ~φk rð Þ are the metal electron wavefunctions which are or-
thogonalized with respect to ϕG rð Þ [18]. Since, in the continuum limit
the sums on k and on q in Eq. (8a) and the sum on τ in Eq. (6) become
3-dimensional integrals [20] therefore evaluation of ΓB requires the cal-
culation of 12-dimensional integrals, a non‐trivial task similar to that
faced to evaluate (two-electron) Auger rates [21]. This situation is not
surprising since the PBPN mode is one of the complements to the
two-electron Auger mode where the energy given up by the captured
electron is absorbed by a bulk plasmon (in the PBPN) instead by a sec-
ond electron (in the Auger case). Nevertheless, the evaluation of ΓB
has the extra complexity of the three-dimensional singularity which is
contained in Ve−pl

q;k rð Þ. Rewrite Ve−pl
q;k rð Þ as

Ve−pl
q;k rð Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πω qð Þ
Vq2

s
e−iq⋅rSq rð Þθ −zð Þ ð9Þ

with

Sq rð Þ ¼ ∑
τ>qc

4π
Vτ2
� �

eiτ⋅rg q;k; τð Þ ð10Þ

The usual transformation to the continuum for τ ∑τ→ V
8π3

� �
∫d3τ

� �
[20] yields with Eq. (7) to

Sq rð Þ ¼ 1
2π2 ∫d

3τ
1

Ω qð Þ−q⋅τ−
1

Ω qð Þ
� �

eiτ⋅r

τ2
ð11Þ

with Ω qð Þ ≡ ω qð Þ−q⋅k. Consider cylindrical coordinates as shown in
Fig. 1(a) with τ=(τ∥, φτ, τz), q ¼ q∥;φq; qz

� �
, r ¼ ρ;φr; zð Þ z≤0ð Þ and

d3τ=τ∥dτ∥dτzdφτ where 0≤τ∥≤∞, −∞≤τz≤∞, and 0≤φτ≤2π. In
order to deal with the three-dimensional singularity in Eq. (11), we con-
sider the approximationΩ qð Þ−q⋅τ ≅ Ω qð Þ−qzτz which will allow us to
obtain an analytical expression forVe−pl

q;k . It amounts to only consider the
z-component contribution of the external field to induce the bulk
plasmon excitation. Even if the contributions parallel to the surface
plane were not negligible we expect that our approximation will give
the right order of magnitude for ΓB. Therefore, withQz ≡Ω qð Þ=qz, the ex-
pression in square brackets in Eq. (11) reduces to τz Ω qð Þ Qz−τzð Þ½ �−1, so
that

Sq rð Þ ¼ −1
2π2Ω qð Þ∫

∞
0dτ∥τ∥∫

∞
−∞

dτzτze
izτz

τz−Qzð Þ τ2∥ þ τ2z
	 
∫2π

0 dφτe
iτ∥ρcos φτ−φrð Þ

; z≤0

ð12Þ

The angular integration in Eq. (12) yields [22] 2πJ0(τ∥ρ) with J0(x)
the zeroth-order cylindrical Bessel function. Therefore

Sq rð Þ ¼ − 1
πΩ qð Þ∫

∞
0dτ∥τ∥J0 τ∥ρð ÞIτz ð13Þ

with

Iτz ¼ ∫∞
−∞dτz

τze
izτz

τz−Qzð Þ τ2∥ þ τ2z
	 
 ; z≤ 0 ð14Þ

The integral Iτz is solved straightforwardly in the complex plane
with the contour shown in Fig. 1(b). Its solution is

Iτz ¼
−iπ

Q2
z þ τ2∥

Qze
izQz− Qz−iτjj

� �
ezτ∥

h i
; z≤ 0 ð15Þ

The first term in Eq. (15), coming from the singularity on the real
axis in the integrand of Eq. (12) gives, as expected, the most important
contribution since the exponential factor ezτ∥ (with z≤0) in the second
term makes its contribution to Sq rð Þ negligible as compared to the first
term. Numerical checking confirms that the term proportional to ezτ∥

contributes less than 1% to Sq rð Þ so that within both our Bohm–Pines
Fock–Tanimodel and the approximation contained in Eq. (12), it is con-
sistent to neglect it. Therefore keeping the first term in Eq. (15) we ob-
tain

Sq rð Þ ¼ i
Qze

izQz

Ω qð Þ ∫∞
0dτ∥

τ∥J0 τ∥ρð Þ
τ2∥ þ Q2

z
ð16Þ

Since the integration in τ∥ yields [22] exactly K0(|Qz|ρ) we finally
get for the electron plasmon coupling

Ve−pl
q;k rð Þ ¼ − i

qz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πω qð Þ
Vq2

s
K0 Qzj jρð Þeiz Qz−qzð Þe−iq∥⋅ρθ −zð Þ ð17Þ

The presence of the Bessel function K0 in Eq. (17) is not unusual
within the context of collective response of the semi-infinite electron
gas. It has appeared connected to the imaginary part of the image po-
tential which accounts for the energy loss of incident particles due to
the creation of surface plasmon excitation [23] and also as the oscilla-
tory component of surface wake potential [24]. In our case however it
appears as a consequence of the coupling between bulk plasmons and
electrons of the metal induced by the external particle. The analytical
expression of Eq. (17) for Ve−pl

q;k rð Þ makes it much more tractable the
evaluation of ΓB given by Eqs. (8a) and (8b).

2.2. Electronic wavefunctions

The atomic wavefunction for the ground state of the Helium atom
and the corresponding eigenenergy (perturbed by the presence of the
metal surface) were evaluated numerically [25] by consideration of
the Bottcher model potential [26] to represent the intra-atomic (elec-
tron–core) interaction which far from the surface yields unperturbed
energy eigenvalues within 0.55% of the experimental results while
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the Jennings et al. potential [27] was used to represent the electron–
surface interaction. The numerical wavefunction was obtained as a
linear combination of basis functions which in our case correspond
to hydrogenic wavefunctions in parabolic coordinates. In order to
simplify the calculations to obtain a primary estimate of ΓB we have
fitted the numerical wavefunction to the hydrogen-like expression
ϕHe
G rð Þ ¼ α3=π

	 
1=2 exp −αrð Þ which is also reported in Ref. [25] with
the parameter α being a function of the distance d between the ion
and the image plane (the image plane is at a distance δ outside the
JE so that s=d+δ). For Al, we shall consider the values δ=0.7, 1.0
and 1.3 to cover the range of values reported in the literature [27]).
The values of α(d), tabulated in Ref. [25] for the range 2≤d≤20, in-
clude in an average way the perturbation produced by the surface
on the atomic state. The corresponding (perturbed) ground state en-
ergy defined by εG dð Þ ¼ − 1

2 α dð Þ½ �2 reproduces very well the numeri-
cal results [25] showing the characteristic 1/4d energy shift behavior
down to d=2. For d=0 and 1, we have frozen the energy value to
εG(d=2). On the other hand, for the metal electron wavefunctions
~φk of Al (kF=0.93) we have used the usual solution of the step poten-
tial [21] orthogonalized [3] to ϕHe

G rð Þ.

3. Matrix elements and transition rates: results and discussion

Application of the above wavefunctions together with the analytical
expression of Eq. (17) forVe−pl

q;k allows us to reduce thematrix elements
M defined in Eq. (8b) from three- to one-dimensional integrals whose
explicit expressions are given in Appendix A. Although some of the in-
termediate steps are non‐trivial we did not include them here to
avoid unnecessary enlargement of the article. On the other hand, it is
also possible to perform both the angular integration on the k-space
in Eq. (8a) (since in our approximation the matrix elements do not de-
pend on such variable) and the integration on the delta function. As a
consequence one can reduce the evaluation of ΓB from 9-dimensional
integrals into 5-dimensional integrals which are solved by standard nu-
merical routines. Finally we indicate that for this primary estimation of
ΓB the bulk plasmon dispersion for Al has been neglected so that [10]
ω(q)=ωp=0.552 with qc=0.582.

The behavior of ΓB as a function of the ion-image plane distance d is
given in Fig. 2 for the three values of δ already indicated in the previous
section. One can observe that smaller values of δ yield larger values of ΓB
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Fig. 2. Static transition rates (in a.u.) as a function of the particle-image plane distance d (in a
for δ=0.7 (triangles up), δ=1.0 (triangles left), and δ=1.3 (triangles down)—see text. F
Dashed line and dot-dashed line: MEA transition rates reported in Refs. [28,29], respectivel
although the differences are of not much significance close to the image
plane where the contribution of the bulk mode becomes relevant. For
purposes of comparison we have also included in Fig. 2 the
corresponding results of two reports [28,29] for the multielectron
Auger capture mode (MEA) together with those for the excitation of a
surface plasmon (SP) [6]. It is important to emphasize that the MEA
transition rates reported in Refs. [28,29] contain simultaneously the
contributions of both the standard two-electron Auger mode [5] and
the surface plasmon excitation [6] but not the bulk plasmon contribu-
tion considered here, even when in their case the ion is allowed to
enter the metal. In fact, although the formalism used in Refs. [28,29]
should in principle contain this latter contribution, it was eliminated
in practice [30] probably due to the numerical problems caused by the
three-dimensional singularity related to the bulk plasmon excitation.
Indeed, the above situation makes it very clear the difficulties intro-
duced by such three-dimensional singularity which we have solved
here in an approximated way for an ion which does not get inside the
solid.

One can see from Fig. 2 that although for both large and interme-
diate distances the transition rates for the potential excitation of bulk
plasmons do not vanish they appear to be negligible as compared to
both MEA and SP rates. However for d≲1 the PBPN transition rates
become comparable and even larger than the SP rate which vanishes
below that distance due to energetic constraints [6]. It appears then
that very close to the surface the PBPN channel would be the only
one that could compete with the standard two-electron Auger com-
ponent of the MEA one in order to neutralize the ion.

4. Conclusions

A novel mechanism for ion neutralization at metal surfaces has
been proposed whereby the potential energy given up by the metal
electron when it gets bound to the external ion allows the excitation
of a bulk plasmon. The important point to be emphasized here is that
the bulk plasmon excitation is induced by an external ion traveling
outside the solid which is a situation typical of grazing ion surface in-
teractions. The electron-bulk plasmon coupling for such a process has
been obtained and a primary calculation of the corresponding transi-
tion rate has been performed. These primary results seem to indicate
that the bulk plasmon mode rates are comparable to the surface
3.5 4 4.5 5 5.5 6 6.5 7

lane distance d (a.u.)

: PBPN - δ = 0.7 −
: PBPN - δ = 1.0 −
: PBPN - δ = 1.3 −
: SP (Ref. [6])
: MEA (Ref. [28])
: MEA (Ref. [29])

.u.). Full lines with open triangles: PBPN transition rates computed in the present work
ull line with open circles: Surface plasmon (SP) transition rates computed in Ref. [6].
y.

image of Fig.�2
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plasmon mode for ion-image plane distances of the order of or small-
er than one Bohr radius.

We emphasize the fact that the present results represent a first at-
tempt to face the non‐trivial task of evaluating transition rates for the
here proposed novel mechanism of potential bulk plasmon excitation
for external ion neutralization under grazing incidence conditions. In-
deed, the present qualitative and quantitative results obtained in the
static case must be corroborated by calculations containing the effect
of the parallel ion velocity which has been found to significantlymodify
both the plasmon and MEA transition rates [11]. Only then one might
attempt to use the bulk plasmon rates to evaluate physical variables
(like angular distributions or neutral fractions) that can be finally com-
pared to experimental data. The results reported in this work indicate
that such calculations might be worth the effort.
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Appendix A

After two of the three integrations for the matrix elements M de-
fined in Eq. (8b) are performed,within the orthogonalized Born approx-
imation, it can be written as M=M1−M21M22 where the first Born
term M1 is given by

M1 ¼
ffiffiffiffiffiffi
α3

π

s
A q∥; qzð ÞB kzð ÞI1 ðA1Þ

with

A q∥; qzð Þ ¼ iei Qz−qzð Þ

qz

ffiffiffiffiffiffiffiffiffiffi
2πω
Vq2

s
; ðA2Þ

B kzð Þ ¼
kz þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0−k2z

q
ffiffiffiffiffiffiffiffiffiffiffiffi
2VV0

p eikz ; ðA3Þ

I1 ¼ 2πα∫∞
0du

uf uð Þ
β2

e− βþi Qz−qzþkzð Þ½ �s

β þ i Qz−qz þ kzð Þ½ � sþ 1
β
þ 1

β þ i Qz−qz þ kzð Þ½ �
� �

ðA4Þ

and

f uð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 þ 2u2 Q2

z− k∥−q∥ð Þ2	 
þ Q2
z þ k∥−q∥ð Þ2	 
q ðA5Þ

while the orthogonalization correction productM21M22 is:

M21M22 ¼ α3

π

 !3=2

A q∥; qzð ÞB kzð ÞI21I22 ðA6Þ
with

I21 ¼ 4πα∫∞
0du

u~f uð Þ
~β2

e−
~βþi Qz−qzð Þ½ �s

~β þ i Qz−qzð Þ
h i sþ 1~β þ 1

~β þ i Qz−qzð Þ
h i

2
4

3
5; ðA7Þ

~f uð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 þ 2u2 Q2

z−q2∥
	 
þ Q2

z þ q2∥
	 
q ; ðA8Þ

and

I22 ¼ 2πα
h2

e− hþikz½ �s

hþ ikz½ � sþ 1
h
þ 1

hþ ikz½ �
� �

θ k∥ð Þ; ðA9Þ

where β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ u2

p
; ~β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2 þ u2

p
and h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ k2∥

q
:
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