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Abstract. In this work, a method to extract continuous symmetries of general second-order
linear ordinary differential equation is presented. The formalism is illustrated by two examples.

1. Introduction

Ordinary differential equations (ODEs) appear in many fields of Physics [1] and the analysis of
their symmetries plays an important role to extract information about the solutions of those
equations [2-4]. In this work, we have applied the Anderson-Kumei-Wulfman method [5-8] to
extract continuous symmetries of general second-order linear ordinary differential equation.

In general, we consider general homogeneous linear ODEs represented by the action of the
differential operator Â(x) on a function f(x)

Â(x)f(x) = 0, (1)

where the differential operator Â(x) is give by

Â(x) = α0(x) + α1(x)∂x + α2(x)∂xx + ... (2)

In this work we are interested in second order ODEs, then αi = 0, for i ≥ 3.
A symmetry operator Q̂ of equation (1) is defined as a differential operator that maps solution

of equation (1) into solution of the same equation, i.e.,

Â(x)g(x) = 0, (3)

where
g(x) = Q̂(x)f(x). (4)

After assuming a particular form for the operators Q̂, condition (3) under constrain (1) defines
the symmetries of the ODE (1).
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2. Symmetry extraction

Let us start by considering a general second-order homogeneous linear ODE:

d2y

dx2
+ p(x)

dy

dx
+ q(x)y(x) = 0. (5)

After substituting

y(x) = f(x) exp

[

−
1

2

∫ x

p(ξ)dξ

]

(6)

in equation (5), it is easy to see that the function f(x) satisfies the following differential equation:

d2f

dx2
+ v(x)f(x) = 0, (7)

where

v(x) = q(x) −
1

4
p2(x) −

1

2

dp

dx
. (8)

We are interested in continuous symmetry generators of the form

Q̂(x) = α(x) + β(x)
d

dx
(9)

for the equation (7). In other words, if f(x) is a solution of equation (7) then we need to find
the functions α(x) and β(x) so that:

g(x) = Q̂(x)f(x) (10)

is also a solution of equation (7), i.e.

d2g

dx2
+ v(x)g(x) = 0. (11)

Then differentiating equation (10), replacing in (11) and using that f(x) is lineally independent,
we obtain the following equation system:

α′′
− v′β − 2vβ′ = 0, (12)

2α′ + β′′ = 0. (13)

The above system determines the conditions for α(x) and β(x) function.
Working on equations (12) and (13), we obtain:

β′′′ + 4vβ′ + 2v′β = 0. (14)

Equation (14) may be solved if v (x) function is known.
Let us assume that we know two particular solutions u1 (x) and u2 (x) for equation (7), i.e.

u′′

1 + vu1 = 0 and u′′

2 + vu2 = 0. (15)

Now, if we consider the following definition

φ (x) = C1u
2
1 + C2u

2
2 + C3u1u2, (16)

It is easy to show that φ (x) function satisfies the equation:

φ′′′ + 4vφ′ + 2v′φ = 0. (17)
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Therefore, equation (14) defines the β (x) function as

β (x) = C1u
2
1 + C2u

2
2 + C3u1u2, (18)

where the functions u1 (x) and u2 (x) are two lineally independent particular solutions of equation
(7):

u′′

1 + vu1 = 0 and u′′

2 + vu2 = 0.

However, it is only necessary to know one solution since the second linear independent solution
of equation (7) is obtained by the relation

u2 (x) = u1 (x)

∫ x dξ

[u1 (ξ)]2
. (19)

Finally, having β(x) it is possible to obtain α(x) expansion coefficient by:

α′′ = −
1

2
β′′′. (20)

3. Examples

The symmetry extaction method will be exemplified by two simple equations:

3.1. Example 1

Let us consider the simplest second order ODE:

fxx = 0. (21)

Step 1: Find a particular solution of (21)

u1 = C1x. (22)

Step 2: Use equation (19), to build a second independent solution

u2 = C1x

∫ x dξ

(C1ξ)2
= C2. (23)

Step 3: Use equation (18) to obtain β(x) function

β(x) = B1x
2 + B2 + B3x. (24)

Step 4: Use equation (13) to obtain α(x) function

α(x) = −
1

2

∫ x

β′′(ξ)dξ = −B1x. (25)

Step 5: Build the symmetry generators

Q̂1 =
d

dx
, Q̂2 = x

d

dx
, Q̂3 = x − x2 d

dx
. (26)

Step 6: Check the symmetry property

ÂQ̂1f = 0, ÂQ̂2f = 0, ÂQ̂.3f = 0 (27)

Step 7: Find the algebra

[Q̂1, Q̂2] = Q̂1, [Q̂1, Q̂3] = I − 2Q̂2, [Q̂2, Q̂3] = Q̂3. (28)

And, introducing the new definition:

Â0 = Q̂2 − 1/2, Â− = Q̂1, Â+ = Q̂3, (29)

the following commutation relations are obtained:

[Â0, Â±] = ±Â±, [Â+, Â−] = −2Â0. (30)
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3.1.1. Symmetry Visualization: With the symmetry generators we can obtain the action
of this generators on the solution of the original ODE.

The general solution of ODE (21) is:

y = a + bx, (31)

where a and b are arbitrary constants. Then the actions of Â+, Â− and Â0 over (31) are

exp(θÂ0)(a + bx) = ā + b̄x, ā = e−θ/2a, b̄ = eθ/2b

exp(θÂ−)(a + bx) = ā + bx, ā = a + θb

exp(θÂ+)(a + bx) = a + b̄x, b̄ = b + θa

Figure 1 shows the plot of (31) for particular values of a and b constants. Figures 2, 3 and 4

show the action of Â+, Â− and Â0 symmetry operators on solution (31) respectively.

Figure 1 Figure 2

Figure 3 Figure 4

3.2. Example 2

Let us consider the second order ODE:

fxx + k2f = 0. (32)

Step 1: Find a particular solution of (32)

u1 = cos(kx). (33)

Step 2: Use equation (19) to build a second independent solution

u2 = cos(kx)

∫ x dξ

[cos(kx)]2
=

sin(kx)

k
. (34)
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Step 3: Use equation (18) to obtain β(x) function

β(x) = C1 cos2(kx) + C2

sin2(kx)

k2
+ C3

sin(kx)

k
cos(kx). (35)

Step 4: Use equation (13) to obtain α(x) function

α(x) = C1

k sin(2kx)

2
− C2

sin(2kx)

2k
+ C3

1

2
(1 − cos(2kx)) + C4. (36)

Step 5: Build the symmetry generators

Q̂1 = k
2

sin(2kx) + 1

2
(1 + cos(2kx)) d

dx , (37)

Q̂2 = 1

2
− 1

2
cos(2kx) + 1

2k sin(2kx) d
dx , (38)

Q̂3 = 1

2k sin(2kx) + 1

2k2 (cos(2kx) − 1) d
dx . (39)

Step 6: Check the symmetry property

ÂQ̂1f = 0 ÂQ̂2f = 0, ÂQ̂3f = 0. (40)

Step 7: Find the algebra

[Q̂1, Q̂2] = Q̂1, [Q̂1, Q̂3] = I − 2Q̂2, [Q̂2, Q̂3] = Q̂3. (41)

And, introducing the new definitions:

Â0 = Q̂2 − 1/2, Â− = Q̂1, Â+ = Q̂3, (42)

the following commutation relations are obtained:

[Â0, Â±] = ±Â±, [Â+, Â−] = −2Â0. (43)

3.2.1. Matching examples 1 and 2: From the equation (33) and (34) we have the general
solution of EDO (32)

y = C1 cos(kx) +
C2

k
sin(kx). (44)

Taking the limit k → 0 on equation (32), we obtain equation (21). In same way, this limit
reduces solution (44) to the solution of equation (21).

y = C1 + C2x. (45)

On the other hand, taking the limit k → 0 on symmetry generators(37), (38) and (39), we obtain

lim
k→0

(Q̂1) = lim
k→0

(

k

2
sin(2kx) +

1

2
(1 + cos(2kx))

d

dx

)

=
d

dx
,

lim
k→0

(Q̂2) = lim
k→0

(

1

2
−

1

2
cos(2kx) +

1

2k
sin(2kx)

d

dx

)

= x
d

dx
,

lim
k→0

(Q̂3) = lim
k→0

(

1

2k
sin(2kx) +

1

2k2
(cos(2kx) − 1)

d

dx

)

= x − x2 d

dx
.

Showing the compatibility between the symmetry operators obtained in example 1 and 2
respectively. It is noteworthy that commutations relations (28) remain invariant under the
limit k → 0.
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4. Conclusion

A general method to find continuous symmetries of second-order linear ODEs has been presented.
To obtain the symmetry generators a particular solution of the ODE under study is required.
The method has been illustrated by two examples.
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