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ABSTRACT: In this work we study the isotonic oscillator, V(x) = Ax2 + Bx−2, on the
whole line −∞ < x < +∞ as an example of a one-dimensional quantum system with
energy level degeneracy. A symmetric double-well potential with a finite barrier is
introduced to study the behavior of energy pattern between both limit: the harmonic
oscillator (i.e., a system without degeneracy) and the isotonic oscillator (i.e., a system with
degeneracy). © 2009 Wiley Periodicals, Inc. Int J Quantum Chem 110: 1317–1321, 2010
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1. Introduction

T he problem of degeneracy of bound states
in one-dimensional quantum mechanics has

been studied over several decades [1–9] since
Loudon showed the existence of degenerate states
for one-dimensional hydrogen atom [10]. Basi-
cally, degeneracy is not allowed for the usual one-
dimensional quantum systems by the well-known
nondegeneracy Theorem [11]: if ψ1 and ψ2 are two
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solutions of the one-dimensional stationary
Schrödinger equation

ψ ′′(x) + 2µ

�2
[E − V(x)]ψ(x) = 0, (1)

with ψ1(x) and ψ2(x) vanishing in the limit x →
±∞, then the Wronskian of ψ1 and ψ2 functions is
identically zero

W[ψ1, ψ2](x) = ψ1(x)ψ ′
2(x) − ψ ′

1(x)ψ2(x) = 0. (2)

And integration of (2) then yields

ψ2(x) = cψ1(x), (3)

where c is an arbitrary constant. So, the wave-
functions ψ1 and ψ2 are linearly dependent and
describes the same quantum state.
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Obviously, the above nondegeneracy Theorem is
therefore not necessarily valid if ψ1(x)ψ2(x) = 0 any-
where. For instance, if we consider the following trial
wave-functions φ1(x) = x2e−x2 and φ2(x) = x|x|e−x2 ,
then it is easy to show that the Wronskian W[φ1, φ2] is
identically zero, but φ1 and φ2 are linearly indepen-
dent on the whole real line R. In other words, φ1 and
φ2 are two degenerated wave-functions. Note, how-
ever, that φ1 and φ2 are linearly dependent if they are
restricted either to the interval R

− ∪ {0} or R
+ ∪ {0},

i.e.

φ2(x) =
{

c+φ1(x), x ∈ R
+,

c−φ1(x), x ∈ R
−, (4)

with c+ = 1 and c− = −1. Result (4) is essentially
the same as (3) for each connected components R

+

and R
−, respectively. Taking second derivative of

φ’s functions and replacing it in (1), we find the
following expression for the potential function:

V(x) = Ax2 + Bx−2. (5)

The above potential function is singular at origin
x = 0 and it is an example of the main role played
by singular potentials to define degeneracy in one-
dimensional quantum mechanics [7]. In general,
degeneracy could be allowed if the potential is
singular at a node of the wave-functions.

Potential (5) was studied by Goldman and
Krivchenkov [12]. They showed that the energy spec-
trum of this potential is an infinite set of equidistant
energy levels similar to the harmonic oscillator. For
this reason, this potential is termed the isotonic oscil-
lator [13–18]. In this work, we consider the isotonic
oscillator on the whole domain −∞ < x < +∞ as
a case study of a one-dimensional quantum system
with energy level degeneracy. After a brief review
of the isotonic oscillator in Section 2, a double-well
model with a finite barrier is introduced in Section 3
to study the behavior of energy pattern between both
limit cases: the harmonic oscillator (a system with-
out degeneracy) and the isotonic oscillator (a system
with degeneracy).

2. Isotonic Oscillator

Let us consider a particle of mass µ on the whole
line −∞< x< +∞ under isotonic potential function

V(x) = 1
2
µω2x2 + g

x2
, (6)

where ω > 0 and g > 0. After introducing the
following dimensionless variables

y =
√

µω

�
x, ε = E

�ω
, (7)

the Schrödinger equation for the isotonic oscillator
reads

ψ ′′(y) + [2ε − v(y)]ψ(y) = 0, (8)

where

v(y) = y2 + 1
4
(2λ + 1)(2λ − 1)

1
y2

, (9)

and

λ = 1
2

√
1 + 8µg

�2
. (10)

In particular, harmonic oscillator is recovered in the
limit g → 0 (i.e., λ → 1/2). The constrain 0 < g
restricts λ values to 1/2 < λ. The energy levels for
the isotonic oscillator are given by

εn = 2n + 1 + λ, n = 0, 1, 2, . . . (11)

and the unnormalized wave-functions are

ψ(even)
n (y)

=
{

yyλ− 1
2 e−y2/2F(−n, 1 + λ, y2) for y ≥ 0

−y|y|λ− 1
2 e−y2/2F(−n, 1 + λ, y2) for y < 0

with n = 0, 1, 2, . . . , (12)

and

ψ(odd)
n (y)

=
{

yyλ− 1
2 e−y2/2F(−n, 1 + λ, y2) for y ≥ 0

y|y|λ− 1
2 e−y2/2F(−n, 1 + λ, y2) for y < 0

with n = 0, 1, 2, . . . , (13)

where F(α, γ , z) is the confluent hypergeometric
function. The normalization constant for the isotonic
oscillator wave-functions is

Nn =
√

(λ + 1)(λ + 2) · · · (λ + n)

n!�(λ + 1)

√
µω

�
. (14)
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FIGURE 1. The potential y 2 + b/(κ + y 2) is plotted for
b = 3/4 (λ = 1) and κ = 0 (dots), κ = 0.125 (line) and
κ → ∞ (dash).

3. Double-Well Model

To study the behavior of energy pattern between
both limit cases: the harmonic oscillator (a system
without degeneracy) and the isotonic oscillator (a
system with degeneracy), let us consider the follow-
ing double-well potential function

w(y) = y2 + b
κ + y2

, (15)

where

b = 1
4
(2λ + 1)(2λ − 1). (16)

Potential function (15) reduces to that of the isotonic
oscillator in the limit κ → 0 and to that the har-
monic oscillator in the limit κ →∞. Figure 1 shows
the behavior of potential (15) for several values of κ

parameter.
Stationary Schrödinger equation for a particle of

mass µ oscillating on the whole real line −∞ < x <

+∞ under double-well potential (15) reads

(κ + y2)
[
Dyy − y2] ψ(y) + [2ε(κ + y2) − b]ψ(y) = 0.

(17)

We can write the function ψ in (17) in terms of the
complete orthonormal system of eigenfunctions of

the corresponding harmonic oscillator, i.e.

ψ(y) =
∞∑

n=0

cnψn(y), (18)

where ψn(y) are the so-called Weber–Hermite func-
tions [19]. So, we can use the properties of Weber–
Hermite functions,

[
Dyy − y2] ψn(y) = −(2n + 1)ψn(y), (19)

and

yψn(y) = nψn−1(y) + 1
2
ψn+1(y), (20)

to obtain the following recursion system for the c’s
coefficients:

αmcm−2 + βmcm + γmcm+2 = 0, (21)

where

αm = (2m − 3 − 2ε)/4, (22)

βm = (2m + 1 − 2ε)(2κ + 2m + 1)/2 + b, (23)

γm = (2m + 5 − 2ε)(m + 2)(m + 1), (24)

for m = 0, 1, 2, . . . with α0 = α1 = 0 by defini-
tion. Because of the symmetry of potential (15) under
reflection y → −y, even and odd solutions can be
obtained by choosing c0 �= 0 and c1 = 0 or c0 = 0
and c1 �= 0, respectively. In order that the system
(21) may posses nontrivial solutions, the associated
tridiagonal determinants for even and odd solutions,
respectively, must vanish, i.e.,

∣∣∣∣∣∣∣∣∣∣∣

β0 γ0 0 0 · · ·
α2 β2 γ2 0 · · ·
0 α4 β4 γ4 · · ·
0 0 α6 β6 · · ·
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣
= 0

and

∣∣∣∣∣∣∣∣∣∣∣

β1 γ1 0 0 · · ·
α3 β3 γ3 0 · · ·
0 α5 β5 γ5 · · ·
0 0 α7 β7 · · ·
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣
= 0. (25)

For a given m, it is straightforward to see, from (22)
to (24), that in the limit κ → ∞ we have αm/κ ∼ 0,
βm/κ ∼ (2m + 1 − 2ε), and γm/κ ∼ 0. So, condition
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TABLE I
Eigenvalues ε for several values of log(κ) with λ = 1, after solving numerically Eq. (25).

log κ ε0 ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9

−4.000 1.9958 1.9961 3.9914 3.9921 5.9868 5.9881 7.9821 7.9840 9.9771 9.9799
−3.500 1.9948 1.9957 3.9896 3.9914 5.9843 5.9872 7.9787 7.9829 9.9730 9.9786
−3.000 1.9920 1.9945 3.9842 3.9894 5.9762 5.9845 7.9681 7.9796 9.9597 9.9748
−2.500 1.9830 1.9908 3.9668 3.9833 5.9503 5.9763 7.9335 7.9696 9.9162 9.9632
−2.000 1.9544 1.9803 3.9099 3.9659 5.8636 5.9533 7.8152 7.9418 9.7651 9.9313
−1.500 1.8646 1.9532 3.7212 3.9233 5.5723 5.8990 7.4308 7.8785 9.3067 9.8607
−1.000 1.6021 1.8951 3.2465 3.8418 5.0288 5.8042 6.9094 7.7759 8.8392 9.7537
−0.500 1.1427 1.7971 2.8267 3.7312 4.7326 5.6935 6.6895 7.6689 8.6640 9.6514

0.000 0.7811 1.6792 2.6542 3.6314 4.6188 5.6080 6.6003 7.5937 8.5885 9.5839
0.500 0.6051 1.5849 2.5737 3.5661 4.5604 5.5560 6.5524 7.5495 8.5470 9.5448
1.000 0.5359 1.5329 2.5306 3.5288 4.5272 5.5259 6.5247 7.5237 8.5228 9.5220
1.500 0.5117 1.5113 2.5110 3.5107 4.5105 5.5102 6.5100 7.5098 8.5096 9.5094
2.000 0.5037 1.5037 2.5037 3.5037 4.5036 5.5036 6.5035 7.5035 8.5035 9.5034
2.500 0.5012 1.5012 2.5012 3.5012 4.5012 5.5012 6.5012 7.5012 8.5012 9.5012
3.000 0.5004 1.5004 2.5004 3.5004 4.5004 5.5004 6.5004 7.5004 8.5004 9.5004
3.500 0.5001 1.5001 2.5001 3.5001 4.5001 5.5001 6.5001 7.5001 8.5001 9.5001
4.000 0.5000 1.5000 2.5000 3.5000 4.5000 5.5000 6.5000 7.5000 8.5000 9.5000

(25) implies ε ∼ m + 1/2, i.e., the harmonic oscillator
limit. In general, for given values of λ and κ param-
eters, ε can be evaluated after solving numerically
the above tridiagonal determinant conditions (25).
Table I shows the numerical results of ε for several
values of log(κ) with λ = 1. The plot of these results
(see Fig. 2) shows the smooth transition of energy
pattern from nondegeneracy to degeneracy.

4. Conclusions

Isotonic oscillator, defined over the whole domain
−∞ < x < +∞, is an illustrative example of a one-
dimensional quantum system with a singularity
(located at the origin) that exhibits energy degener-
acy.At the singular point, both even and odd isotonic
oscillator wave-functions have a node at origin and
its first derivative there exists, so the nondegeneracy
Theorem is overcame because every pair of solutions
ψ and ϕ for a given energy satisfy the condition

ψ(x)ϕ′(x) − ψ ′(x)ϕ(x) = 0,

without leading to the conclusion of linear depen-
dence of ψ and ϕ. The term y|y|λ− 1

2 in the isotonic
degenerated wave-functions is responsible of con-
tinuity at the origin (the singular point) of each
wave-function and its first derivative. Certainly, the
above arguments are not present in case of harmonic

oscillator and degeneracy is not allowed for that sys-
tem. A smooth transition from degeneracy (isotonic
oscillator) to nondegeneracy (harmonic oscillator)
was studied by the introduction of a symmetric
double-well potential with finite barrier.

FIGURE 2. Eigenvalues ε as a function of log(κ) are
plotted for the double-well model with λ = 1.
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