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KEY POINTS 23 

 24 

NEP striations form as coastal vorticity propagates offshore via beta-plumes. 25 

 26 

Vorticity is anchored by coastal geometry, so striations remain stationary. 27 

 28 

Striation magnitude is constrained at the shelf by potential vorticity trapping.29 
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ABSTRACT 30 

 31 

 Recent observations suggest that the mean mesoscale oceanic zonal velocity field is 32 

dominated by alternating jet-like features often referred to as striations. Here the 33 

generating dynamics of Northeast Pacific striations are explored with a set of 120-year 34 

eddy-permitting model simulations. Simulations are conducted with decreasing 35 

complexity towards idealized configurations retaining the essential dynamics and forcing 36 

necessary for striation development. For each simulation, we diagnose the spin-up of the 37 

ocean model and the sensitivity of striation generation to topography, coastal geometry, 38 

and the wind stress, which modulates the gyre circulation and the nonlinearity of the flow 39 

field.  40 

 Results indicate that Northeast Pacific striations develop predominantly at the 41 

eastern boundary and migrate westward in congruence with beta-plumes both in the 42 

nonlinear and quasi-linear regimes. Mean striations have their source in the coastline 43 

geometry, which provides quasi-steady vorticity sources energized by eastern boundary 44 

current instabilities. 45 

 46 

 47 

 48 

 49 

50 
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INDEX TERMS 51 

  52 

Numerical modeling 53 

 54 

Continental shelf and slope processes 55 

 56 
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1. INTRODUCTION 58 

 Observations have determined that the mean mesoscale oceanic zonal velocity field 59 

is dominated by quasi-permanent jet-like features commonly referred to as striations 60 

(Maximenko et al., 2005; 2008; Huang et al., 2007; Ivanov et al., 2009; van Sebille et al., 61 

2011; Buckingham and Cornillon, 2013). These features have also been detected in high-62 

resolution ocean models (Nakano and Hasumi, 2005; Richards et al., 2006; Kamenkovich 63 

et al., 2009) including the Regional Ocean Modeling System (ROMS) (Huang et al., 64 

2007). Although mechanisms for the emergence of mean zonal jets have been suggested 65 

using theory and idealized models (Rhines 1975; Maltrud and Vallis 1991; Panetta 1993; 66 

Rhines, 1994; Cho and Polvani, 1996; Galperin et al., 2006; Nadiga, 2006; Baldwin et al., 67 

2007; Dritschel and McIntyre, 2008), the dynamics of striations remain uncertain.  68 

 Scott et al. (2008) showed that mesoscale eddies follow preferred pathways and so 69 

may produce the striated features seen in mean zonal velocity. Schlax and Chelton (2008) 70 

suggested that striations are an artifact of time-averaging large random mesoscale eddies. 71 

Melnichenko et al. (2010) showed, however, that eddies contribute to the potential 72 

vorticity (PV) variance of striations, indicating that they are dynamically distinct. Hristova 73 

et al. (2008) hypothesized that striations might be related to radiating instabilities of 74 

eastern boundary currents (EBC’s). Wang et al. (2012) showed using a simple single-layer 75 

quasi-geostrophic model that radiating modes excited nonlinearly within an EBC do 76 

trigger striations. 77 

 Centurioni et al. (2008) reconstructed the time-mean map of geostrophic velocities 78 

at 15 m depth using drifters and satellite altimetry and found zonal currents connected to 79 

permanent meanders of the California Current System (CCS). They proposed that vorticity 80 
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associated with these meanders radiates Rossby waves that form stationary jets known as 81 

beta-plumes (Rhines, 1994; Afanasyev et al., 2012; Belmadani et al., 2013). 82 

 Here we test this hypothesis with sensitivity experiments using model output. By 83 

altering the model bathymetry, we remove the effect of topographic features and a 84 

continental slope. We then decrease the strength of atmospheric forcing by an order of 85 

magnitude to test the role of nonlinear dynamics, as well as coarsen the resolution of the 86 

model to 40 km to test the role of eddy variability. Finally, we replace the eastern 87 

boundary coastline with a flat meridional wall to test the effects of coastal geometry. 88 

 89 

 2. OCEAN MODEL AND EXPERIMENTAL SETUP 90 

 This analysis employs a set of 120-year ROMS integrations (Shchepetkin and 91 

McWilliams, 2005; Haidvogel et al., 2008, Curchitser et al., 2005) over 180°W-105°W; 92 

9°N-53°N with a horizontal resolution of 20 km and 30 vertical layers. This configuration 93 

has captured both the mean and variability of the CCS (Marchesiello et al. 2003; Di 94 

Lorenzo et al., 2008; Di Lorenzo et al., 2009). Vertical diffusion is parameterized 95 

according to the Large/McWilliams/Doney scheme (Large et al., 1994). Forcing is a 96 

climatological NCEP wind stress (Kistler et al., 2001) without buoyancy fluxes. NCEP 97 

heat fluxes are employed with a nudging toward NOAA extended sea surface temperatures 98 

(SST’s) (Smith and Reynolds, 2004) in order to avoid drifts in model SST (Josey, 2001). 99 

Horizontal boundaries are closed walls, and the control topography is extracted from 100 

Smith and Sandwell (1994). Integrations begin from rest with a uniform density profile 101 

extracted from the World Ocean Atlas 2005 (Locarnini et al., 2006; Antonov et al., 2006). 102 
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Striations are diagnosed using zonal currents at 300 m, where the signature of the gyre 103 

circulation is reduced.  104 

 The role of topography is explored in a set of experiments (flat+slope) (Table 1), in 105 

which a uniform bottom depth (5000 m) is prescribed everywhere except along the eastern 106 

boundary (and around the Hawaiian and Aleutian islands). Here a uniform shelf slope was 107 

applied. The slope was taken from the average continental slope between 30°N and 40°N. 108 

Within the flat+slope set, the role of nonlinearity was determined by reducing the strength 109 

of the forcing by a factor of ten (flat+slope, weakly nonlinear). The role of mesoscale 110 

eddies was determined by further coarsening the grid to 40 km (flat+slope, weakly 111 

nonlinear, non-eddy resolving). In the flat runs, sensitivity to topography was determined 112 

by removing the continental shelf and prescribing a uniform 5000 m bottom depth. In the 113 

wall run, the coastlines are replaced with a meridional wall at 125°W. The control, 114 

flat+slope, flat, and wall integrations are all able to reproduce the gyre circulation (Figs. 115 

1a, 1b, 1c, and 1d). 116 

 117 

3. SPIN-UP OF STRIATIONS FROM THE CALIFORNIA CURRENT 118 

 Progressive means of 300 m zonal velocities from the control run over the first 6, 119 

12, and 120 months (Figs. 2a, 2b, and 2c) indicate that striations emerge as zonal plumes 120 

generated offshore from notable topographic features, as well as features of the California 121 

coastline, consistent with observations (Centurioni et al., 2008).  122 

 Progressive averages from the flat+slope experiment (using the idealized 123 

bathymetry and slope describes in Section 2) with full forcing and 20 km resolution (Figs. 124 

2d, 2e, and 2f), show that, in the absence of topographic forcing, striations emerge on 125 
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similar time scales and have similar magnitude, but evince more spatial coherence. This 126 

suggests that topography plays a significant, but lesser influence on offshore striations, in 127 

agreement with South Pacific observations (Buckingham and Cornillon 2013). It is, 128 

however, clear that the primary source of striation energy is located near the eastern 129 

boundary and that striation development is kinematically consistent with beta-plumes.  130 

 To determine the sensitivity of striation development to nonlinear background 131 

velocity regimes, we examine two additional flat+slope experiments, the first in which the 132 

magnitude of the wind forcing is reduced by a factor of ten (i.e. weakly nonlinear), and a 133 

second in which the resolution of the model is additionally coarsened to 40 km (i.e. 134 

weakly nonlinear and non-eddy-resolving). The results of these experiments are 135 

indistinguishable visually (not shown) and images are derived from the weakly 136 

nonlinear/eddy-resolving case (Figs. 2g, 2h, and 2i). Model output still evinces 137 

development of apparent eastern boundary beta-plumes. Striations still dominate 300 m 138 

zonal velocity and are maintained at a comparable magnitude to that of the full forcing 139 

case. Meanders take longer to develop with the reduced wind energy input (Fig. 2e and 140 

2h), and striations are more strongly zonal due to a decreased large-scale circulation. 141 

 To evaluate the importance of the continental slope in the formation of striations, 142 

we performed three experiments with uniform 5000 m bottom depth and vertical 143 

continental boundaries (flat experiments, Table 1). When we remove the continental sole 144 

in the flat experiment, the magnitude of striations decreases to roughly half that of the 145 

control and flat+slope runs (Figs. 3a, 3b, and 3c) even though the wind forcing is the 146 

same, and the gyre circulation is maintained at the same magnitude (Figs. 1b and 1c). The 147 

meanders that are sources of vorticity for striations are weaker in the flat run (Fig.1c), 148 
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which may explain the reduced striation magnitude. Continental slopes also impose a 149 

dynamical boundary to the offshore propagation of potential vorticity anomalies, so that 150 

anomalies from the coast are “trapped” on the shelf and unable to propagate freely 151 

offshore until they reach a critical magnitude. Although we do not examine the dynamics 152 

of this potential vorticity trapping in detail, we hypothesize that the absence of the 153 

continental slope in the flat run allows beta plumes to propagate westward independently 154 

of their magnitude. Consistent with this hypothesis, when we reduce the wind magnitude 155 

by a factor of ten in the flat weakly nonlinear experiment (Table 1), striation strength is 156 

also reduced by an order of magnitude (Figs. 3d, 3e, and 3f). This linear response to the 157 

wind magnitude is not observed in the flat+slope case, where reducing the wind forcing 158 

by an order of magnitude only reduces striation strength by a small fraction (Figs. 2f and 159 

2i). This leads us to conclude that without a continental slope, striations freely propagate 160 

offshore as they develop, whereas in the slope case, anomalies must reach a critical 161 

magnitude in order to escape. Despite the slower spin-up of the CCS in the weakly 162 

nonlinear flat+slope experiment, the magnitude enforced by the slope ensures that 163 

striations remain strong in the mean (Fig. 2i). The results of the flat weakly nonlinear non-164 

eddy-resolving experiments are again visually indistinguishable and are not presented. 165 

 The role of coastal geometry was further explored in the wall experiments (Table 1) 166 

by removing the coastline and setting a wall along the eastern boundary (125°W) (Fig. 167 

1d). While the spin-up is characterized by the formation of striations, they are short-lived 168 

in the mean, and their signature eventually disappears (Figs. 3g, 3h, and 3i). Striations are 169 

subsumed in the mean because meanders are no longer anchored to coastal features and 170 

propagate freely, consistent with the Wang et al. (2012) model. 171 
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 172 

4. CONCEPTUAL MODEL FOR STRIATIONS IN THE EASTERN NORTH PACIFIC  173 

 By analyzing the spin-up of the ROMS model, we showed that Northeast Pacific 174 

striations are not necessarily forced by surface fluxes of momentum or buoyancy, but can 175 

develop from vorticity sources associated with topography and/or instabilities along the 176 

eastern boundary, a process for which we propose the following mechanism. 177 

  EBC flow is unstable (Walker and Pedlosky 2002, Hristova et al. 2008, Wang et al. 178 

2012), and generates meanders that are anchored to coastal features (Batteen, 1997; 179 

Centurioni et al., 2008). The associated vorticity propagates westward as a beta-plume, 180 

consistent with observations of striation attachment to CCS meanders (Centurioni et al. 181 

2008). It also agrees with the two most basic observations presented here: that persistent 182 

striations are energized within the boundary current as it spins up, and that they develop 183 

primarily in response to coastal geometry. This progression is most clear in the flat 184 

experiment (Figs. 3a, 3b, and 3c), where jet patterns remain in the absence of bottom 185 

topography and continental slope, and in the wall experiment, in which permanent 186 

striations could not develop without coastal features to anchor vorticity anomalies.  187 

 These results strongly suggest that intense striations arise at the coast. The fact that 188 

striations emerge in a non-eddying regime indicates that they are unlikely to result solely 189 

from time-averaged mesoscale eddy tracks, consistently with recent results from idealized 190 

models (Nadiga and Straub, 2010) and observations (Ivanov et al., 2012; Buckingham and 191 

Cornillon, 2013). The extreme contrast in magnitude between the flat+slope weakly 192 

nonlinear and flat weakly nonlinear experiments indicates that potential vorticity trapping 193 

constrains striation strength.   194 
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 There are a number of significant idealizations in our model. Climatological wind 195 

forcing precludes small-scale winds that may modulate striations (Chelton et al., 2004; 196 

Taguchi et al., 2012). NCEP winds also produce biases in EBC’s (Colas et al., 2012; 197 

Cambon et al., 2013), which may alter stratification and associated coastal instabilities. A 198 

purely kinematic treatment is also limited in its ability to determine the wider role of 199 

striations in the mean circulation, as well as to generalize to other basins. Further study 200 

that focuses on the dynamics and vorticity budgets of striations will be vital an 201 

understanding of the dynamical balances associated with their generation.202 
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FIGURE CAPTIONS 382 

 383 

Figure 1. - 1a , 1b, 1c, and 1d show the 120 year means of sea surface height (SSH) from our 384 

control, flat+slope, flat, and wall experiments, respectively.  385 

 386 

Figure 2. - 2a-2c show progressive averages of 300 m depth zonal currents (u) at 6, 12, and 120 387 

months, respectively, from our control experiment . 2d-2f are the corresponding plots for the 388 

flat+slope case, while 2g-2i show similar plots for the flat +slope weakly nonlinear experiment. 389 

 390 

Figure 3. - 3a-3c show progressive averages of 300 m u at 6, 12, and 120 months, respectively, 391 

from our flat experiment . 3d-3f correspond to the flat weakly nonlinear case. 3g-3i corespond to 392 

the wall experiment. 393 
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Exp. Name  Geometry Forcing Resolution 
control Full topography full 20 km 
    
flat+slope Flat bottom at 5000 m with full 40 km 
flat+slope, weakly nonlinear uniform continental shelf full/10 40 km 
flat+slope, weakly nonlinear, non-eddy-resolving along the eastern boundary full/10 40 km 
    
flat Flat bottom at 5000 m full 20 km 
flat, weakly nonlinear  full/10 40 km 
flat, weakly nonlinear, non-eddy-resolving  full/10 40 km 
    
wall Flat bottom at 5000 m with full 20 km 
 eastern boundary meridional    
 wall    
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