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S U M M A R Y
Non-linear elastic response of rocks has been widely observed in laboratory, but very few
seismic studies are reported in the literature, even though it is the most natural environment
where this feature could be observed. Analytic solutions to the non-linear wave propagation
phenomena are not readily available, and there is a need to use approximated techniques. It is
clear that when a seismic wave propagates through a homogeneous non-linear elastic media, it
will be perturbed by the non-linearity. This perturbation can be treated as a source of scattering,
spreading the energy of the primary wave in space and time, contributing to the seismic coda.
This is in some sense similar to the effect of heterogeneities. The properties of the coda due
to the non-linearity depend on the amount of non-linearity and the seismic moment. Using a
perturbation approach we calculate the amplitude of the scattered waves, and show that it can
describe reasonably well the main features of real seismic codas.

Key words: Fault zone rheology; Theoretical Seismology; Wave Scattering and diffraction;
Wave propagation.

1 I N T RO D U C T I O N

Seismology has shown that a linearly elastic response of rock provides a good description of a variety of phenomena related to earthquakes.

Most observations related to large earthquakes can indeed be explained with the linear elastic theory, but it would be naive to believe that

it provides a complete description, knowing that laboratory observations show that most rocks do behave non-linearly close to the rupture

condition (Scholz 1990).

The classical approach to relate ground deformation to source parameters is through the representation theorem, and the principle of

superposition. These are only valid for a linear constitutive law. Thus, if non-linear elasticity is important, one can expect that this classical

approach is not appropriate.

Since non-linear elastic behaviour of most materials has been recognized as a significant factor for several centuries by physicists and

material scientists (Bell 1984), it is important to investigate the effect of non-linear terms in the wave propagation phenomena, especially near

fault zones. Among the studied features related to non-linear effects of rocks are the non-linear dependence of seismic velocities on stress

(Birch 1961; Johnson & McCall 1994; McCall 1994), resonant peak shift (Winkler et al. 1979), effects of anisotropy and non-linearity (Zheng

et al. 2006).

The acquisition of high precision displacements near sources has improved the understanding of sources of deformation in a wide range of

scales of space and time, especially with respect to earthquake and volcanic processes. However, since the quantity and quality of observations

are increasing rapidly, it provides the opportunity to increase the understanding of the source process, structure and rheology of the media,

including second order effects, such as the non-linearity of the media.

In this paper, we consider a general non-linear constitutive relationship on the dynamic deformation near fault zones, showing that the

effect of this non-linear term is to spread the seismic energy in space and time, even when the elastic media is homogeneous. We concentrate

on the effect on secondary arrivals, calculating coda envelopes and show that it describes reasonable well the observations. Therefore, we

suggest that a realistic analysis of coda waves requires the determination of non-linear elastic parameters as well as heterogeneities and intrinsic

attenuation.

2 E Q UAT I O N O F M O T I O N

The constitutive relationship for a continuous media is known for the case of small deformations, when only linear terms are retained.

Many possible generalizations to consider finite strain have been proposed (Truesdell 1966), but none completely satisfies all theoretical and

observational considerations simultaneously. In the following we consider one possible generalization, and find solutions for it, with the aim

572 C© 2007 The Authors

Journal compilation C© 2007 RAS



Seismic coda due to non-linear elasticity 573

of showing the range of implications the theory has, on aspects that can be observed seismically. The choice of the non-linear terms considered

will change the form of the scattered waves and thus the coda, but would not change the general conclusion of this paper.

The constitutive equation for a continuous medium is given by τ = ∂W
∂ε

, where W is the strain energy density. Considering only the

dependence of the energy on the strain tensor, and assuming an isotropic media, the energy can be expressed in terms of the invariants of

the strain tensor, I1 = Trace(ε), I2 = Trace(ε · ε) and I 3 = Det(ε), then, W (ε) = W (I 1, I 2, I 3). The complete form of this function is not

known, but certain restrictions apply. It is natural to expand W in series over the equilibrium state, which will be defined as ε = 0. The third

power on ε, which gives rise to the Murnaghan coefficients (l, m, n) (Murnagham 1951), is not considered here because we require from

physical arguments the energy W to be positive definite, and symmetric on strain. Third power coefficients do not satisfy these requirements.

One can argue that the constitutive relationship should be established on the Cauchy stress tensor, which is referred to the instantaneous area

of the surface element; or the Piola–Kirchhoff stress tensor, referred to the fixed undeformed media. In each case we will describe the same

phenomena, but since the purpose of this paper is to show that the consideration of non-linear terms in the constitutive relationship implies a

scattering phenomena even on a homogeneous medium, in the following we will consider a particular form of the strain energy, which is the

most general up to fourth order given by

W (I1, I2, I3) = (
aI 2

1 + bI2 + cI 4
1 + dI 2

2 + eI 2
1 I2

)
/2

from which the stress-strain relationship is given by:

τi j = [
aI1 + 2cI 3

1 + eI1 I2

]
δi j + [

b + 2dI2 + eI 2
1

]
ε (1)

and the elastodynamic equation ρü = ∂ jτi j + fi has the following expression:

ρüi − aεkk,i − bεi j, j = fi + 6cεppεqqεkk,i

+ 2d(εklεlkεi j, j + 2εklεlk , jεi j )

+ e(εpqεqpεkk,i + εllεkkεi j, j + 2εppεlkεkl,i

+ 2εppεi jεkk, j ). (2)

Hookes’s law is obtained when a = λ, b = 2 μ, c = d = e = 0. From laboratory experiments (Scholz 1990), it is clear that c, d, e < 0.

Exact analytic solutions to eq. (2) are not practical, and approximate solutions are required. One can assume that the constitutive relationship

is approximately Hooke’s law, where the slight departures from it, will perturb slightly the linear solutions, justifying a perturbation approach.

In this approach, the non-linear terms are treated as a source of scattered waves.

2.1 Perturbation approach

The propagation of an incident P wave through a media where its constitutive relationship departs slightly from Hooke’s law, is described

by the elastodynamic equation (eq. 2). This equation does not admit wave solutions that can propagate without distortion (Bataille & Lund

1982). In general the incident wave is directly affected by the media. One way to compute this effect, is to assume that the solution is the

superposition of the incident wave plus a small component due to the non-linearity, thus

u = u(l) + u(nl) u(nl) � u(l)

ε = ε(l) + ε(nl) ε(nl) � ε(l).

When strains are small, we can solve eq. (2) by iterations, where the first term is

ρü(l)
i − aε

(l)
kk,i − bε

(l)
i j, j = fi

the well-known linear equation. The next term in the expansion is

ρü(nl)
i − aε

(nl)
kk,i − bε

(nl)
i j, j = 6cε(l)

ppε
(l)
qqε

(l)
kk,i + 2d

(
ε

(l)
kl ε

(l)
lk ε

(l)
i j, j

+ 2ε
(l)
kl ε

(l)
lk, jε

(l)
i j

)
+ e

(
ε(l)

pqε
(l)
qpε

(l)
kk,i + ε(l)

ppε
(l)
kkε

(l)
i j, j

+ 2ε(l)
ppε

(l)
lk ε

(l)
kl,i + 2ε(l)

ppε
(l)
i j ε

(l)
kk, j

)
.

(3)

All the non-linear terms can be considered as sources of scattering. Calling these terms as F (nl) we have

F (nl)
i = 6cε(l)

ppε
(l)
qqε

(l)
kk,i + 2d

(
ε

(l)
kl ε

(l)
lk ε

(l)
i j, j + 2ε

(l)
kl ε

(l)
lk, jε

(l)
i j

)
+e

(
ε(l)

pqε
(l)
qpε

(l)
kk,i + ε(l)

ppε
(l)
kkε

(l)
i j, j + 2ε(l)

ppε
(l)
lk ε

(l)
kl,i

+2ε(l)
ppε

(l)
i j ε

(l)
kk, j

)
. (4)
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2.2 Scattering solution

Once the force (F (nl)) is determined, the solution for the displacement is given by the standard solution for a linearly elastic media (Aki &

Richards 1980)

ui (x, t) =
∫ ∫

Gi, j (x, x ′, t, t ′)F (nl)
j (x ′, t ′) dx ′ dt ′, (5)

where G i, j (x , x ′, t , t ′) is the Green’s function.

To include the effect of absorption, or intrinsic attenuation, we add in eq. (5) the term (exp − π f t∗) (Aki & Richards 1980), where f is

the predominant frequency, t∗ = ∫
dt
Q and Q is the quality factor.

To illustrate the effect of non-linearity we consider two simple cases: one, when the source is far from the region of non-linear behaviour,

such that we can approximate it as a incident plane wave; and the other, when the source is embedded within the region of non-linear behaviour,

such that we can consider it as a point source.

2.2.1 Incident plane wave

Assuming that a source is far from the region of interest, we can approximate the incident wave by a plane wave with a propagation direction

defined by k i , and displacement direction by ai , where the displacement is given by

u(l)
i = Aai expi(ωt−ki xi )

then

u(l)
i, j = −iui k j

ε
(l)
i j = −i

2
(ui k j + u j ki )

ε
(l)
ll = −i(u · k)

ε(l)
pqε

(l)
qp = −1

2
((u · k)2 + u2k2)

ε
(l)
i j, j = −1

2

(
ui k

2 + (u · k)ki

)
ε

(l)
j j ε

(l)
ppε

(l)
qq,i = (u · k)3ki .

Thus the first non-linear term is

F (nl) = 6c(u · k)3ki

+ 3d

2

[
(u · k)3ki + (u · k)u2k2ki + (u · k)2k2ui + u2k4ui

]
+ 3

2
e
[
2(u · k)3ki + (u · k)2k2ui + (u · k)u2k2ki

]
. (6)

The main features are that the resulting force is proportional to (1) the amplitude of the incident wave up to the third power, (2) the wavenumber,

or frequency, up to the fourth power. In comparison to scattering due to heterogeneities, which is linearly proportional to the amplitude of the

incident wave, and proportional to the frequency up to third power.

These differences can be tested with seismological observations for special situations. For the particular case of a P wave, where ai =
k i , eq. (7) becomes

P F (nl) = 6(c + e + d)A3k4ai (7)

which is a vector in the direction of displacement of the P wave.

For the case of an S wave, where ai is perpendicular to k i , it becomes

S F (nl) = 3d

2
A3k4ai (8)

which is a vector in the direction of displacement of the S wave.

At each point of space, the incident P or S waves, will produce a scattered P and S wave with a radiation pattern shown in Fig. 1, where

the strength of the scattered waves are expressed in eqs (7) and (8).

2.2.2 Point source incident wave

When the source is embedded within the region of non-linear behaviour, it is important to solve first for the case of a point source. In this case

the incident wave is expressed as

u(l)
i (x, t) = 1

4πρα3r
γiγ j Ṁ jk

(
t − r

α

)
γk

+ 1

4πρβ3r
(δi j − γiγ j )Ṁ jk

(
t − r

β

)
γk, (9)
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Figure 1. Radiation pattern of scattered waves due to incident P and S waves on a medium that is homogeneous but its constitutive relationship is non-linear

given by eq. (1). For an incident P wave, the scattered P waves are mainly in the forward and backward directions. In the forward direction, its amplitude

is negative, thus reducing the amplitude of the main wave. This would have a similar effect as absorption. The scattered S waves are mainly on the plane

perpendicular to the incident P wave. For an incident S wave, the scattered P waves are in the direction of displacement of the incident wave, while the scattered

S waves are mainly on the plane perpendicular to the displacement of the incident wave.

where γ i = r i/r , is the unit vector between the source and the observed point, while α and β, are the P and S waves, respectively, and M is

the moment tensor of the source.

From eq. (9) we obtain

u(l)
i, j (x, t) = − 1

4πρα4r
γiγ j (γ · M̈α · γ )

− 1

4πρβ4r
(δik − γiγk)(γ · M̈β · γ )

ε
(l)
i j (x, t) = − 1

4πρα4r
γiγ j (γ · M̈α · γ )

− 1

8πρβ4r

[
M̈β

ilγlγ j + M̈β

jlγiγl − 2γiγ j (γ · M̈β · γ )
]

ε
(l)
i i (x, t) = − 1

4πρα4r
(γ · M̈α · γ )

ε
(l)
i j, j (x, t) = 1

4πρα5r
γi (γ · ···

Mα · γ )

+ 1

8πρβ5r

[ ···
Mβ

il γl − (
γ · ···

Mβ

jl · γ
)
γi

]
ε

(l)
kk,i (x, t) = 1

4πρα5r
γi (γ · ···

Mα · γ )

ε
(l)
i j ε

(l)
j i (x, t) =

(
1

4πρα4r

)2

(γ · M̈α · γ )2

+1

2

(
1

4πρβ4r

)2[
γ · M̈β · M̈β · γ − (γ · M̈β · γ )2

]

ε
(l)
ik ε

(l)
ki, j (x, t) =

(
1

4πρα4r

)2(−2

α

)
(γ · ···

Mα · γ )(γ · M̈
α · γ )γ j

+
(

1

4πρβ4r

)2(−1

β

)[
γ · ···

Mβ · M̈β · γ − (γ · M̈
β · γ )(γ · M̈

β · γ )
]
γ j ,
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where Mα = M(t − r
α

) and Mβ = M(t − r
β

).

Inserting these terms into eq. (4), we obtain:

F (nl)
i = 6(c + d + e)

α

(
1

4πρα4r

)3

(γ · M̈α · γ )2γ · ···
Mα · γ γi

+ 2d + e

2β

(
1

4πρα4r

)2
1

4πρβ4r
(γ · M̈α · γ )2

[ ···
Mβ

i · γ − (γ · ···
Mβ · γ )γi

]

+ 2d + e

2α

1

4πρα4r

(
1

4πρβ4r

)2

γ · ···
Mα · γ

[
γ · M̈β · M̈β · γ − (γ · M̈β · γ )2

]
γi

+ d

4β

(
1

4πρβ4r

)3[
(γ · M̈β · M̈β · γ )(

···
Mβ

i · γ − γiγ · ···
Mβ · γ )

+ 2(γ · M̈β · ···
Mβ · γ )

(
M̈

β

i · γ − γiγ · M̈β · γ
) − ···

Mβ

i · γ (γ · M̈β · γ )2

+ (γ · ···
Mβ · γ )(γ · M̈

β · γ )
[
3γi (γ · M̈

β · γ ) − 2M̈
β

i · γ
]]

+ e

β

(
1

4πρβ4r

)2(
1

4πρα4r

)
γi (γ · M̈α · γ )[(γ · M̈β · ···

Mβ · γ )

− (γ · ···
Mβ · γ )(γ · M̈

β · γ )]

+ e

α

(
1

4πρα4r

)2(
1

4πρβ4r

)
(γ · ···

Mα · γ )(γ · M̈
α · γ )

[
M̈

β

i · γ − γiγ · M̈β · γ
]
. (10)

In the particular case of a source representing an explosion, M i j = Mδ i j , where δ i j is the Kronecker symbol, we have

F (nl)
i =

(
6(c + d + e)

α

) (
1

4πρα4r

)3

M̈α2 ···
Mαγi (11)

which depends on r−3, M3, non-linear parameters, and points into the direction of γ i . This means that: (1) from the point of view of the

radiation pattern, the scattered P waves will be stronger in the forward and backward directions, (2) will produce scattered S waves, (3) since

it decays fast (r−3), the stations close to the source will detect this effect more effectively and (4) the amplitude depends on the third power

of M .

2.2.3 Comparison between non-linear and heterogeneous scattering

For weak heterogeneities of the elastic parameters and density, the equivalent force representing the heterogeneities is a linear function of the

moment and the variations of the elastic parameters and density, F (he) ∼ ···M · f (δμ,δλ,δρ)

r , (Wu & Aki 1985). For density fluctuations alone, the

radiation pattern of scattered P and S waves are the same as for non-linear elasticity (Fig. 1). The only difference between scattered waves

produced by density heterogeneities and non-linearities relates to the strength of the scattered waves, which for the case of non-linearities

depends on M̈(t)2 ···M(t)
r3 , while on heterogeneities on

···M(t)
r .

Thus the ratio of non-linear scattering over heterogeneous scattering is

unl

uhe
∼

[
M̈(t)

r

]2

(12)

which refers to the time dependence, moment and distance. This can be used to differentiate both effects from real data sets.

To illustrate the difference between the effect of heterogeneity and non-linearity of the elastic media on the scattering properties, we

compute the envelope of the scattered waves originated from an explosive point source, considering each case independently. For the distribution

of heterogeneities we assume both a Gaussian and exponential autocorrelation function with different scale lengths, following (Wu & Aki

1985). For the non-linear case, the scattered waves are obtained using (11), for which the result is given by

us
i (r, t) = Cp

∫
γiγ jγ

′
j

|r − r ′||r ′|3 M̈2

(
t − |r ′|

α
− |r − r ′|

α

) ···
M

(
t − |r ′|

α
− |r − r ′|

α

)
d3r ′

+ Cs

∫ (
γ ′

i − γiγ jγ
′
j

)
|r − r ′||r ′|3 M̈2

(
t − |r ′|

α
− |r − r ′|

β

) ···
M

(
t − |r ′|

α
− |r − r ′|

β

)
d3r ′ (13)

which represent the propagation of a P wave from the source up to a point r ′ distributed through the volume, and then being scattered and

propagating both as P and S waves, up to the point r, where

Cp = 6(c + d + e)

4πρα3

(
1

4πρα4

)3

Cs = 6(c + d + e)

4πραβ2

(
1

4πρα4

)3

.
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Figure 2. Envelope for scattered waves due to heterogeneities (Gaussian and exponential) and non-linearity of the media, computed at the distance of 0.1 km

from the source. There is no significant difference in the envelope considering Gaussian or exponential autocorrelation functions for the heterogeneities.

The integral over space is treated as an integral over the isochrons (the surface where scattered waves arrive at the same time). More

complicated source time functions can be considered but since at present we are interested in the main features of the envelope, this simple

source is appropriate.

In Fig. 2 it is shown the envelope for both distributions of heterogeneities (Gaussian and exponential autocorrelation functions) and

non-linearity of the media, computed for a distance of 0.1 km from the source, where interestingly we observe that: (1) the envelope due to the

non-linear model tends to dominate at long time lapses over the heterogeneous models, (2) there is no major difference between Gaussian and

exponential models of the heterogeneities at this range and frequency. The envelope, e(t), is computed as e(t) = √
u(t)2 + H [u(t)]2, where

u(t) and H [u(t)] are the displacement and its Hilbert transform, respectively. We do observe that there is no significant difference for both

cases of heterogeneties for distances at least up to 3 km.

Another aspect that influences the slope of the envelope is the source time function, which controls the radiation spectrum, and therefore

the strength for different frequencies through the correlation function. A detailed comparison of different heterogeneous models, non-linear

model and observations at different offsets will be presented elsewhere.

2.2.4 Examples

All seismic records show a coda, especially in the high-frequency range. An example is shown in Fig. 3 for the seismograms filtered between

1 and 10 Hz. and the envelopes in Fig. 4. These records are obtained from the TIPTEQ experiment (TIPTEQ 2006). The source of the

seismograms is an explosion located at 20 m depth, and the stations are located at 0.1, 1.2 and 2.5 km away. The envelope decay of these

observations (Fig. 4) depend on the distance to the source and the predominant frequency. Note that at the same distance, the amplitude

decay changes slightly when changing the centre frequency of the bandpass filter in the range between 1 and 40 Hz. It is shown that at longer

distances from the source, the decay is less pronounced, meaning that the energy is spread over a larger region compared to records at closer

distances.

Synthetic envelopes are shown in Figs 5(a)–(c), superimposed on the observations. The main point is that the non-linear model fits quite

good and even better than the heterogeneous model. For large distances, however, the non-linear model is not so good, but it reproduces the

main features.

This is a very simple homogeneous infinite model, where we only include the effect of non-linearity of the elastic media, and we expect

that considering a half space or layered structure could improve the model even more. It is reasonable to expect that the non-linear coefficients

might vary through the media as well.

3 C O N C L U S I O N S

Most seismic records in the frequency range over 1 Hz show a significant amount of scattering which is explained as due to heterogeneities in

the crust. This has been used to infer the characteristics of the assumed randomly distributed heterogeneities, as for the characteristic length

of heterogeneities, and fluctuation of seismic velocities (Sato & Fehler 1997).

Here we show that the presence of heterogeneities is not the only explanation for such observations, and that the effect of weak non-linearity

of the elastic media produces comparable observations.
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Figure 3. Observed seismograms filtered between 1 and 10 Hz recorded at distances of 0.1 (top), 1.2 (middle) and 2.5 (bottom) km. The records are shifted in

time, beginning at the observed arrival time. At the closest station, the signal is very short (1 s), and it gets longer for stations farther away from the source.
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Figure 4. Envelopes of seismograms shown in Fig. 3. The envelopes are shifted in time, beginning at the observed arrival time. One can see that the amplitude

decays smoothly during 5 s in all three cases.

The similarity of scattering due to heterogeneities and non-linearity is in the radiation pattern. The main difference between these two

processes is the strength of the scattered field, which has a different dependence on the amplitude of the incoming wave and frequency.

For a non-linear process, the strength of the scattered field is proportional to the amplitude of the incoming wave up to the third power

(when the strain energy depends up to fourth order in the strain tensor), while for a heterogeneous media, it is proportional to the first power.

This implies that for the case of an earthquake, the strength of the scattered field will decay rapidly, simply because the amplitude of the

incident wave decays as it propagates away from the source. This effect is not so strong in the heterogeneous medium.

We have used a special form of non-linearity as an example. There is no agreement upon which is more appropriate from the point of

view of first principles and direct observations. Several forms have been proposed in the literature (Truesdell 1966), and it is not the intention

in this paper to discuss this aspect. Further investigation to compare model predictions with data is underway and will be presented elsewhere.

Here we want to show that simple non-linear elastic behaviour of rocks have an observable implication, and these observations can be used

to infer about the characteristic of non-linearity, to understand further the behaviour of rock mechanics.
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Figure 5. Model results compared with envelopes shown in Fig. 3 for the distance of (a) 0.1 km, (b) 1.2 km and (c) 2.5 km. The envelopes are shifted in time

in order to have the same arrival time. One can see that the main features are well explained. There are discrepancies at the beginning of each trace, but these

could be due to several factors including: (i) the degree of approximations used in the model, as the consideration of a source time function given by a delta

function, or an infinite space and (ii) the contribution from heterogeneities.
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