Programa de Asignatura

Unidad Académica Responsable: Departamento de Geofísica, Facultad de Ciencias Físicas y Matemáticas.

Carrera a las que se imparte: Geofísica y Astronomía.

I.- IDENTIFICACIÓN

Nombre: Física III: Electromagnetismo			
Código: 513214	Créditos: 5	Créditos SCT: 6	
Prerrequisitos: (521227) Cálculo	III, (525223) Ecuacio	ones Diferenciales, (510010) Física	II:
Fundamentos de la Mecánica			
Modalidad: Presencial	Calidad: Obligate	orio Duración: Semestral	
Semestre en el plan de estudio: IV	Geofísica - 3329	– 2015 – 01	
Trabajo Académico: 10 horas			
Horas Teóricas: 4 Horas	Prácticas: 2	Horas Laboratorio: 0	
Horas de otras actividades: 4			

II.- DESCRIPCIÓN

Asignatura de nivel básico de carácter teórico, con fuerte acento en el autoaprendizaje, diseñada para las carreras de Geofísica y Astronomía, y que comprende los principios y leyes básicas de la electricidad y el magnetismo logrados a partir de los resultados mostrados por las evidencias experimentales y de las ecuaciones de Maxwell como marco teórico autoconsistente que permite describir las experiencias.

III.- RESULTADOS DE APRENDIZAJE ESPERADOS

Al finalizar con éxito la asignatura, el estudiante será capaz de:

- R1. Definir el concepto de carga eléctrica como fuente de campo eléctrico e integrar los principios de conservación y cuantización de la carga.
- R2. Describir las propiedades del campo eléctrico creado por distribuciones de cargas puntuales y extendidas haciendo uso del principio de superposición.
- R3. Describir el concepto de potencial eléctrico, para campos eléctricos conservativos.
- R4. Explicar el efecto de un campo eléctrico sobre materiales dieléctricos, conductores y semiconductores sólidos, líquidos o gaseosos.
- R5. Comprender que no es necesario definir un concepto similar a la carga eléctrica como fuente del campo magnético, ya que éste no se observa.
- R6. Describir las propiedades del campo magnético creado por distribuciones estacionarias de corrientes e imanes.
- R7. Explicar el efecto de un campo magnético constante sobre los portadores de carga en corriente.
- R8. Explicar el fenómeno de inducción electromagnética.
- R9. Interpretar las ecuaciones de Maxwell como un marco teórico autoconsistente el cual se puede construir a partir de las observaciones experimentales.

IV.- CONTENIDOS

- 1. Campos y potenciales eléctricos estáticos.
- 2. Efectos de campos eléctricos sobre materiales.

- 3. Circuitos de corriente continua.
- 4. Campos magnéticos estáticos.
- 5. Efecto de campos magnéticos sobre materiales.
- 6. Campos variables en el tiempo.
- 7. Circuito eléctrico de corriente alterna.
- 8. Aportes de Maxwell al electromagnetismo.
- 9. Presentación de las ecuaciones de Maxwell.

V.- METODOLOGÍA

Esta asignatura se desarrolla en base a clases teóricas donde el estudiante discute acerca de los contenidos expuestos y a la ejercitación de problemas propuestos.

VI.- EVALUACIÓN

De acuerdo al Reglamento de Docencia de Pregrado de la Facultad de Ciencias Físicas y Matemáticas.

VII.- BIBLIOGRAFÍA Y MATERIAL DE APOYO

Básica:

- 1. Halliday, D & Resnick, R: Física vol.II, 2003, Cecsa, ISBN 970240232X
- 2. Alonso, M y Finn, E.J: Física, vol II, 1995, Addison Wesley Longman, ISBN 0201625652.

Complementaria:

1. Serway, R: Física, vol II, 2008, McGraw-Hill, ISBN 9706868372.

Fecha aprobación: 2014-2

Fecha próxima actualización: 2019-2