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Background
Future climate changes will affect agriculture, hydrology, and other socio-economic 
fields (Caldeira and Rau 2000; Mearns 2001; IPCC 2007a, b). Atmosphere Ocean Global 
Climate Model (AOGCM) scenarios enable policy makers to develop new environmen-
tal strategies and mitigation methods (IPCC 2007a, b). Several different prospective 
scenarios are projected based on assumptions of population growth, environmental poli-
cies, technological growth, social inequality, and globalization (SRES 2000). Two scenar-
ios for representing high CO2 emissions (A2) and moderate CO2 emissions (B2) (IPCC 
2007a, b) are used as technical research in order to support public policies (e.g. Räisänen 
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scenarios. Finally, we compare the TAR projections with those from the recent Assess‑
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et al. 2004; RupaKumar et al. 2006; Fuenzalida et al. 2006; Conde et al. 2011; Krüger et al. 
2012). These are included in the IPCC Third Assessment Report (TAR) and the Assess-
ment Report 4 (AR4) and updated in the Assessment Report 5 (AR5), released between 
September 2013 and November 2014 (IPCC 2015).

Although physical laws driving the atmospheric–oceanic circulation are well-identi-
fied and the global-scale boundary conditions for modeling are highly precise and well 
established (Collins 2007; Räisänen 2007), climate models have different error sources 
(Räisänen 2007; Baigorria et  al. 2008; Challinor et  al. 2009). Furthermore, AOGCM 
were developed for global conditions (Zorita 2000), and they produce low-scale reso-
lution climate projections (about 200–300 km). Statistical and dynamical downscaling 
techniques (Zorita 2000; Wilby et al. 2004) are used to improve these projections at a 
higher-resolution (20–50  km) over specific zones (domains) Some mesoscale projec-
tions performed are: CREAS (Regional Climate Change Scenarios for South America) in 
Argentina, Uruguay, and Brazil (Marengo and Ambrizzi 2006), “Variabilidad Climática 
para el Siglo XXI” is performed in Chile (Fuenzalida et al. 2006), and PRUDENCE over 
Europe (Déqué et  al. 2005). In the last time was developed the CORDEX as an inter-
national effert for developing high resolution grids (Giorgi et  al. 2009). Downscaled 
datasets inherit AOGCM uncertainties, and we should include them in order to design 
climate-change adaptation strategies.

On the other hand, we also should consider climate variability. For example, El Niño 
Southern Oscillation (ENSO) (Aceituno 1998; Vuille and Garreaud 2011) is one of the 
main phenomena affecting climate variability. This phenomenon affects the Pacific 
Anticyclone, which is the main barrier to fronts producing rain in Chile (Garreaud 
et  al. 2009). Southern oscillation is a temporal pattern and is the difference between 
the measured pressure in two places: Darwin (Australia, 12°27′S, 130°50′W) and Pap-
etee (Tahiti, 17°32′S, 140°34′W). In normal conditions, Papetee shows higher pressures 
than Darwin; however, this relationship is reversed under El Niño conditions (Kiladis 
and van Loon 1988; Guevara-Díaz 2008). Moreover, La Niña is the increase in pressure 
difference between Papetee and Darwin, matching with a decrease in sea temperature 
in coastal Chile (Kiladis and van Loon 1988). Thus, three phases of ENSO are defined: 
La Niña, Neutral, and El Niño phases. Nonetheless, ENSO is not the only phenomenon 
related to climate variability. Mantua et al. (1997) described a Pacific Decadal Oscilla-
tion (PDO) consisting of coherent interdecadal covariability in the dominant pattern 
of North Pacific pressure patterns and sea surface temperature. PDO can modulate the 
interannual ENSO-related global teleconnections (Krishnan and Sugi 2003; Wang et al. 
2008) and their combined effect modulates a large part of hydrological variability within 
continents (Andreoli and Kayano 2005; da Silva et al. 2011; Vuille and Garreaud 2011; 
Wang et al. 2014). However, although ENSO is not explicitly represented in long-term 
projections from AOGCM (Räisänen 2007; Tebaldi and Knutti 2010; Van Haren et  al. 
2013), La Niña and El Niño synoptic conditions are observed. Assessing the rainfall 
pattern under neutral-ENSO phases allow us to understand climate variability under 
normal conditions, which is the basis for designing climate change mitigation counter-
measures. Notwithstanding, since La Niña and El Niño conditions are not a typical pat-
tern, it is necessary to study whether climate models represent climate variability during 
these phases. Since climate projections include ENSO-equivalent synoptic conditions, 
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we can compare projections with current synoptic conditions, thus helping us to under-
stand future climate conditions.

Our case study is focused on a Mediterranean climate, and Chilean data were used. 
We investigate precipitation variability within the Araucanía Region (Chile; 37° to 40°S 
and 71° to 74°W), which presents a very homogeneous climate associated with the 
Pacific anticyclone. The Pacific anticyclone produces weather conditions characterized 
by an important decrease in rainfall during the summer months, coinciding with higher 
annual temperatures (Armesto et al. 2008). The first Chilean mesoscale downscaling was 
computed by the Universidad de Chile’s Department of Geophysics (hereinafter DGF), 
with a dynamical downscaling of Hadley Centre Coupled Model (HadCM3) output 
(2.5° × 3.75° latitude by longitude, Pope et al. 2000; Gordon et al. 2000), using the PRE-
CIS model (providing regional climates for impacts studies, see http://www.metoffice.
gov.uk/precis/). This consisted of downscaling both the baseline data (between 1961 and 
1991), together with B2 and A2 scenarios (between 2070 and 2100) at 0.25° × 0.25° reso-
lution throughout Chile (see Fuenzalida et  al. 2006 for main details and results of the 
experiment). HadCM3 projections are included in the IPCC Third Assessment Report 
(TAR, Fuenzalida et al. 2006). We refer to these downscaled fields as DGF-PRECIS.

Our goal is to first define a methodology to construct a precise, high-resolution cli-
matology of the rainfall variability within a region under different ENSO phases and to 
assess its spatial variability. This initial analysis allows us to construct a database with 
which we can correct the data from projections, subsequently allowing us to measure 
the severity of future changes. We detail the steps to evaluate and correct both climate 
projections (TAR and AR5). In addition, several authors reported that ENSO changes 
extreme event frequency (Jaksic 1998; Grimm and Tedeschi 2009). Within the study 
zone, we construct rainfall histograms to measure frequency of rainy/dryer months, 
and we evaluate the statistical significance of ENSO event impacts on rainfall (one-way 
ANOVA test with a 95 % significance level through a Monte Carlo analysis). Although 
DGF-PRECIS is an important progress for assessing the effects of climate change, 
there are at least three issues left to be solved: (a) DGF-PRECIS dataset have been not 
validated with in situ data, (b) the effect of ENSO on the projected variability has not 
been quantified, and (c) the last IPCC report (AR5) offers new scenarios (Moss et  al. 
2010), while the differences between these new projections (RCP 25, RCP 45, RCP60 
and RCP85) and the old A2 and B2 projections (from TAR) within our regions are still 
unknown. To be consistent with the original HadCM3 model, we use the Hadley model 
outputs included in the IPCC AR5 simulations, called HadGEM (Data distribution 
Center of IPCC, DDC 2015; http://www.ipcc-data.org/sim/gcm_monthly/AR5/WG1-
Archive.htm). Next, we compare the DGF-PRECIS baseline database (between 1961 and 
1991) with in situ data, specifically focusing on different ENSO conditions, validating the 
downscaled fields, and identifying possible limitations of the projected fields over the 
twenty-first century. Based on this comparison, we generate a corrected projection for 
the A2 and B2 climate change scenarios. Subsequently, we also validate and correct the 
new AR5 projected fields scenarios using the HadGEM simulations (Jones et al. 2011; 
Baek et  al. 2013). Finally, we compare the TAR B2 scenario with the RCP 45 scenario 
and the TAR A2 with the RCP85. Additionally, we present results of the RCP 25 scenario 
currently used as the ideal scenario (see Table 3).

http://www.metoffice.gov.uk/precis/
http://www.metoffice.gov.uk/precis/
http://www.ipcc-data.org/sim/gcm_monthly/AR5/WG1-Archive.htm
http://www.ipcc-data.org/sim/gcm_monthly/AR5/WG1-Archive.htm
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This paper is structured as follows. In “Methods” section, we present the in situ data 
used to construct the climatology, and we describe the model dataset used to project 
the rainfall condition up to the twenty-first century. Next, we discuss the methodology 
to study the effect of ENSO cycles on both in situ data and the DGF-PRECIS baseline. 
Moreover, we present statistics to evaluate the statistical significance of ENSO changes 
and effects in in situ fields. Correction methods and the comparison with AR5 scenarios 
are also presented. We present the results in “Results and discussion” section: the clima-
tology, ENSO impact evaluation, the TAR high-resolution dynamical downscaled pro-
jection, validation and correction, and the comparison with AR5 scenarios. Finally, we 
discuss the results and draw our main conclusions in last section.

Methods
Database

We used 56 meteorological stations located across the region with complete rainfall 
records from 1961 to 2010. In order to study projections, we focused on 1961–1991 
according to the time span of the baseline of DGF-PRECIS. The baseline data were pro-
vided by Dirección General de Aguas (DGA, Government agency responsible for the 
management and administration of water resources, see www.dga.cl/) and from Direc-
ción Meteorological de Chile (DMC, Government agency managing the meteorological 
data to predict the weather and climate in the country, see http://www.meteochile.gob.
cl/). To avoid problems in the validation/correction procedure, we selected meteoro-
logical stations that fully represent the climate variability corresponding to 10-year con-
tinuous precipitation records or 15-year non-continuous precipitation records between 
1961 and 2010. Based on these criteria, we selected ten stations to calibrate the DGF-
PRECIS database, and the other stations were used to validate our results (Fig.  1). To 
complete the 15-year non-continuous records, the extended discrete Fourier transfor-
mation was used (Zhang et al. 2008). To check the data quality, we used the double mass 
curve method (Searcy and Hardison 1960). This method is based on a regression model 
between the accumulated rainfalls at two nearby meteorological stations. This approach 
has been successfully used in several studies, including its use to validate Galician rain-
fall records (Mirás-Avalos et al. 2009) and to develop ecologically relevant hydrological 
indexes by the United States Geological Service (USGS; Esralew and Baker 2008). Thus, 
in order to secure a database independent of the calibration method (Piani et al. 2010), 
we split into two databanks: (a) calibration database (10), built from the ten meteoro-
logical stations (held and quality controlled by DMC) with a correct geographical cover-
age and validated by double mass curves, and (b) validation database (46), build from the 
remaining meteorological station (mostly held and quality controlled by DGA).

Based on these ten meteorological stations selected, we generated a climatology to 
describe regional rainfall. We used climate projections based on climate change scenar-
ios defined by several assumptions described in the six scenarios of the Special Report 
on Emission Scenarios (SRES 2000). Categorized by the final expected warming, these 
are called: A1F1, A2, A1B, B2, A1T, and B1. A 6 °C difference takes place between the 
most extreme scenarios, A1F1 and B1. On the focus region, most studies use only two 
scenarios for 2100: severe impact, A2 (850 ppm CO2 eq and global temperature increase 
3 °C), and moderate impact, B2 (621 ppm CO2 eq and global temperature increase 1 °C) 

http://www.dga.cl/
http://www.meteochile.gob.cl/
http://www.meteochile.gob.cl/
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(Fuenzalida et al. 2006; Marengo and Ambrizzi 2006). The last IPCC Assessment Report 
5 (AR5) includes new, improved scenarios based on a new concept: representative con-
centration pathways (RCP), corresponding to patterns which represent the expected 
GHG temporal behavior (Moss et  al. 2010). The main scenarios are summarized in 
Table 1.

Since the CMPI5 projection does not distribute the RCP 60 scenario (IPCC-data), 
we only analyzed the extreme scenarios available: A2 and RCP85. Additionally, we uses 
RCP26 as a reference, which is the lowest available concentration scenario. The low reso-
lution HadCM3 database uses the original variables for HadCM3 (http://cera-www.dkrz.
de/WDCC/ui/Index.jsp), while DGF-PRECIS variables were directly obtained from the 
DGF-PRECIS (the downscaled projection which was corrected) original developers. 
The new HadGEM fields were obtained from the IPCC data distribution center (DDC, 
http://www.ipcc-data.org/).

Climatology of ENSO effects and statistical assessments

ENSO (Neutral, El Niño, La Niña) classification and impacts

Climatology is the monthly mean of all observations, representing a seasonal climatol-
ogy which considers all possible meteorological effects. Instead of limiting ourselves to 
a single climatology, we used three ENSO phases: Neutral (no ENSO), El Niño, and La 
Niña. To assess the impact of ENSO cycles, we defined the ENSO phases by observed 

Fig. 1 Meteorological station network overlapped over a Digital Elevation Model of the region. HadGEM 
pixels are red boxes

http://cera-www.dkrz.de/WDCC/ui/Index.jsp
http://cera-www.dkrz.de/WDCC/ui/Index.jsp
http://www.ipcc-data.org/
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and simulated conditions. We used the ENSO3.4 index, defined by the sea surface tem-
perature (SST) recorded between 120 and 170 W and 5N–5S. This index has a signifi-
cant correlation with the climate in South America (Jaksic 1998; Garreaud and Battisti 
1999; Rigozo et al. 2004). We started classifying the in situ data and DGF-PRECIS output 
according to IRI criteria (see Guevara-Díaz 2008): each month was classified as La Niña, 
El Niño or Neutral (http://iridl.ldeo.columbia.edu/). SST over the Equator were down-
loaded from the HadCM3 baseline (1961–1991) scenario (available at http://www.ipcc-
data.org/) to construct a corresponding IRI criteria ENSO3.4 index and to classify the 
DGF-PRECIS output according to ENSO cycles.

ENSO impacts on climate rainfall condition were evaluated by comparing the monthly 
climate average of each ENSO phase over the time span (1961–2010) for in  situ data 
fields and DGF-PRECIS fields (1961–1991). These phases were also mapped in order to 
identify the spatial pattern of the ENSO effect on both datasets. Mapping was performed 
through ordinary krigging spatial interpolation of in  situ climatology for each ENSO 
phase (Isaaks and Srivastava 1989).

Since climatology does not represent extreme events such as highly wet or dry months, 
we computed rainfall histograms over the whole baseline period (1961–2010) for the 
whole in situ dataset, classifying them into ENSO phases. We grouped these into 25 mm 
intervals and considered the “no rainfall” case as a separate group. This selection helped 
us to evaluate the effect of ENSO on the number of months without rainfall events.

Statistical assessment

We evaluated the statistical significance of the impact of ENSO rainfall events using a 
one-way ANOVA test with a 95 % significance level. When the differences are signifi-
cant, variance between ENSO phases should be higher than the variance of the phase. 
The rate between both values follows a Fisher distribution F, allowing us to evaluate the 
significance of the relationship. Thus, a significant difference among ENSO conditions 
takes place when this rate is higher than the critical F value (Wilks 2006). To perform 
an even more robust test, we used a Montecarlo analysis, consisting of fitting a stochas-
tic model based on the observed data to produce a syntactical data series following the 
same probabilistic distribution as the observed data. 10,000 rainfall data were generated 
based on Weibull distribution, fitted for each ENSO-condition using the in  situ data-
base. Finally, the ANOVA test was performed using the syntactical data instead of the 
observed data.

Table 1 Scenarios used in the AR5 IPCC projection (adapted from Moss et al. 2010)

Scenario Description Severity

RCP85 Rising radiative forcing pathway leading to 8.5 W m−2 (~1370 ppm CO2 
eq) by 2100

Extreme

RCP60 Stabilization without overshoot pathway to 6 W m−2 (~850 ppm CO2 
eq) at stabilization after 2100

High (comparable to A2)

RCP45 Stabilization without overshoot pathway to 4.5 W m−2 (~650 ppm CO2 
eq) at stabilization after 2100

Medium (comparable to B2)

RCP26 Peak in radiative forcing at ~3 W m−2 (~490 ppm CO2 eq) before 2100 
and then decline (the selected pathway declines to 2.6 W m−2 by 
2100)

Low

http://iridl.ldeo.columbia.edu/
http://www.ipcc-data.org/
http://www.ipcc-data.org/


Page 7 of 23Orrego et al. SpringerPlus  (2016) 5:1669 

Comparison between meteorological records and DGF‑PRECIS Outputs

We downloaded the downscaled fields from the data system management of “Variabi-
lidad Climática en Chile” project (http://www.dgf.uchile.cl/~maisa/modelacion_climat-
ica/), and we selected the grid values corresponding to each meteorological station. It 
was not possible to compare the DGF-PRECIS baseline (1961–1991) one by one with 
its corresponding (1961–1991) in  situ measurement since climate models produce 
results in the form of projections rather than forecasts (Wood et al. 2004; Knutti 2008). 
Consequently, we compared them by global statistics and histogram analysis, consider-
ing the whole validate database. Residual and spatial analyses were also performed by 
mapping in situ and projected annual cumulative precipitation using ordinary Krigging 
techniques (Isaaks and Srivastava 1989). Both evaluations were initially carried out using 
the whole database and separating ENSO (El Niño, La Niña) and non ENSO (Neutral) 
conditions.

TAR (DGF‑PRECIS) correction and AR5 projections

We proposed two methods in order to perform a bias correction: correction based on 
coefficient rates (CBCR) and correction based on quantile mapping (CBQM), explained 
in the following:

(a) Correction based on coefficient rates (CBCR) between simulated and measured 
monthly records of precipitation (Eq. 1). 

where frm is the corrected projection, rmis is the monthly average of in situ data, rem is 
the monthly average of estimated data, and fem is the DGF-PRECIS data. It is impor-
tant to state here that we generate the monthly coefficient rmis/rem, based on the cali-
bration database (that is based into 10 meteorological stations, see “Database” section). 
Since climate models represent global trends, this coefficient was computed using all the 
in situ data. A global coefficient (unique for the whole image) is obtained for each aver-
aged month. The final product is a DGF-PRECIS dataset without bias.

Correction Based on Quantile Mapping (CBQM) corrects the RCM-simulated precip-
itation based on constructed empirical cumulative distribution functions (ECDF). The 
frequency of precipitation occurrence is corrected at the same time (Chen et al. 2013). 
Thus, the corrected RCM is computed by the following equation (Eq. 2):

where frm is the corrected projection, ECDF−1

is  is the inverse of the empirical cumula-
tive distribution functions of the in situ data, ECDFrm is the empirical cumulative distri-
bution functions of the modeled data, and Rem is the DGF-PRECIS data. The empirical 
cumulative distribution functions were determined for each month and are based on the 
Weibull distribution. In this case also, the model was computed using the calibration 
database.

(1)frm =

rmis

rem
fem

(2)frm = ECDF−1

is (ECDFrm(Rem))

http://www.dgf.uchile.cl/%7emaisa/modelacion_climatica/
http://www.dgf.uchile.cl/%7emaisa/modelacion_climatica/
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The corrected dataset based on both methods was compared with the validation data-
base by histograms in order to choose the best fit respect to database histogram, which 
was defined based on Euclidean distance. Thus the most fitted was that it shows less 
Euclidian Distance with in situ data.

The corrected dataset based on both methods was compared by histograms with the 
validation database in order to choose the best fit respect to database histogram, which 
was defined based on Euclidean distance. Thus, the chosen fit is the one presenting lesser 
Euclidian Distance with the in situ data.

Based on these corrected scenarios, we assessed the impact of climate change on rain-
fall by computing climatology and histograms of the precipitation intensity such as in 
the case of the baseline in situ data. Histograms were computed to quantify the effect of 
climate change on extreme events (very high precipitation or very dry months), which 
has been previously reported by various authors in South America (Marengo et al. 2009).

Lastly, we compared these corrected projections with the AR5 projections. To perform 
a consistent comparison, we used the HadGEM projections following the same bias cor-
rection method used for DGF-PRECIS and AR5 projection. The baseline was extracted 
from the historical runs over the HadCM3 time span (1961–1991) and then the 2070–
2100 periods were validated and corrected. AR5 projections were provided by the IPCC 
data distribution center (DDC). Since the region is covered by two HadGEM pixels, we 
divided the in  situ data into northern (up to 38°15′S) and southern (down to 38°15′S) 
regions (pixels are 1°15′ ×  1°45′ centered in 37°30′S, 72°45′W and 38°45′S, 72°45′W; 
Fig. 1).

The comparison was performed for the same baseline period as TAR DGF-PRECIS 
(1961–1991). First, we averaged all in situ records (the meteorological stations) located 
inside HadGEM pixels, in order to simulate the rainfall at HadGem pixel resolution 
(Tustison et al. 2001). Second, we compared the averaged in situ data with the HadGEM 
pixels, and we performed a monthly correction for the whole region (as DGF-PRECIS). 
This correction was applied to the AR5 projected scenarios (RCP25, RCP45 and RCP85), 
separating each HadGEM pixel. Third, we also averaged the corrected DGF-PRECIS 
cells located inside the HadGEM pixels for the whole region. Finally, the comparison was 
made between the corrected DGF-PRECIS and the corrected HadGEM pixel scenarios 
(B2 and A2 with RCP 45 and RCP 85, respectively).

Results and discussion
Regional climatology

Our analyses show that the Araucanía Region is characterized between 1961 and 2010 by 
mean annual accumulated precipitation of 1750 ± 29 mm per year. Higher rainfall levels 
occur during the winter of 259 mm per month, and lower rainfall levels occur during the 
summer of 53 mm per month (Fig. 2a). The left-skewness of the monthly precipitation 
curve shows that most monthly precipitation is distributed between 5 and 150 mm per 
month, with a median of 90 mm per month (frequency of 7 %) and a peak of 25 mm per 
month (27 %) (Fig. 2b). Months without rainfall occur with a frequency of 2.4 % (Fig. 2b), 
meaning almost never.
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ENSO effect

Since ENSO is one of the main Chilean climate drivers, we focus our description on its 
variability. During the research period of January 1961 to December 1991, we observed 
84 La Niña months and 99 El Niño months, corresponding to 5 La Niña events and 10 
El Niño events as we showed in Additional file  1. General rainfall spatial distribution 
patterns were similar during all ENSO conditions. Nevertheless, there are important dif-
ferences among ENSO rainfall amount, which changes depending on zone and season. 
This is a different pattern with respect to other classified Chilean regions in the same 
Mediterranean climate (Rouanet 1983), where El Niño conditions imply rainy years, and 
La Niña conditions imply dry years (Aceituno 1998; Jaksic 1998; Garreaud et al. 2009).

During El Niño events, the mean accumulated precipitation is 1851 mm per year, that 
when compared with 1718 mm per year in neutral years, corresponds to a +133 mm per 
year increase. Under La Niña events, the mean accumulated precipitation is 1586 mm 
per year (Fig. 3), corresponding to a −132 mm per year decrease. Based on the monthly 
averages (Fig. 3a), during El Niño events, we observed a low effect with respect to La 
Niña. In fact, during El Niño we do not observe a significant change in the frequency 
of low rainfall months (lower than 100 mm per month, from 45.2 to 46.0 %), with high 
rainfall between 100 and 350 mm per month, from 41.3 to 43.2 %, and in the extreme 
months over 300 mm, from 7.8 to 10.9 % (Fig. 3c). A different pattern is observed dur-
ing la Niña, where the number of high rainfall months increases from 45.2 to 57.8 %, the 
number of low rainfall months decreases from 41.3 to 34.7 % (Fig. 3b), and the number 
of extreme rainfall months decreases from 10.9 to 6.0 % (Fig. 3c). Changes in “No Rain-
fall” events were not significant (Fig. 3c).

For the seasonal averages (Fig. 3b), during the spring months of El Niño years, pre-
cipitation increases by 46.3 %, i.e. +47 mm per month in comparison to neutral years, 
while during the autumn months of El Niño years, precipitation decreases by 17.9  % 
(−28.5 mm per month) in comparison to neutral years. On the other hand, in La Niña 
years, we observe a significant decrease in autumn (30.9 % or −49 mm per month), but 
no significant changes in other seasons (9.0 % or less). These trends confirm the ANOVA 
test of the Montecarlo analysis outputs, showing that the variance explained by each 
ENSO condition and total variance is higher than the critical F values. Therefore, statis-
tically significant differences among ENSO conditions take place.

Fig. 2 a Seasonal precipitation and b relative (solid line) and cumulative (dashed line) frequencies of monthly 
precipitation
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Rainfall spatial distribution patterns are similar during all ENSO conditions, although 
a small decrease in the latitudinal precipitation gradient occurs during El Niño and a 
small increase under La Niña (Fig. 6). During the winter period, La Niña events are gen-
erally characterized by an increase in the precipitation levels in the northwestern zone 
(37°S, 73°W) and a low increase in levels in the southeastern zone (39°S, 72°W), which 
is generally the region with the largest rainfall (Fig.  6). This pattern is reversed under 
El Niño winter events: greater precipitation levels are observed in the southeast, while 
lower levels are observed in the northwest.

Evaluating DGF_PRECIS dataset

Simulated mean monthly rainfalls (134 mm per month for DGF-PRECIS in 1961–1991) 
are higher than the in situ measured values (125 mm per month for 1961–1991), mean-
ing that the model overestimates rainfall. This pattern is also observed during all ENSO 
conditions (Fig.  4a). However, error bars overlap, showing that there is no significant 
difference between the in  situ measurements and simulated data (Fig. 4a). In fact, the 
difference between the means of in situ and DGF-PRECIS data is −8.9 mm, represent-
ing only less than 7 % of the amount of measured annual rainfall. Rainfall histograms 
show a significant overestimation of small rainfall events (lower than 100 mm), with the 
peak at 50 mm more prominent in the simulated curve than in the in situ measurements 
(Fig. 4b). This pattern is a good representation of the drizzle effect discussed by several 
authors (Baigorria et al. 2008; Piani et al. 2010), which is inherent in all AOGCM (Baig-
orria et al. 2008).

In relation to monthly rainfall distribution, DGF-PRECIS presents larger seasonal var-
iability than the observed cycle (standard deviation of precipitation during the 1961–
1991 period of 157 mm for DFG-PRECIS and 122 mm for In-situ records; Fig. 5a). In 

Fig. 3 Annual rainfall cycles of ENSO scenarios a monthly and b seasonal. Differences in monthly rainfall fre‑
quencies between El Niño—Neutral and La Niña—Neutral conditions are shown in (c). Error bars correspond 
to standard error. Histograms were constructed based on intervals of 50 mm
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fact, simulated summer months are drier (38.3 %, i.e. −16.8 mm per month), whereas 
simulated winter months are wetter (15 %, i.e. +34.6 mm per month) than those meas-
ured (Fig.  5a). Under El Niño conditions (Fig.  5d), seasonal distributions of monthly 
rainfall are overestimated, except during the summer months. In contrast, La Niña con-
ditions are well-estimated for February, March, June, August, and October, although 
there are important differences during the remainder of the year (Fig. 5b).

From a geographic point of view, a positive precipitation gradient from the north-
west to the southeast is observed at a rate of 4.78 mm km−1 (Fig. 6). The largest rainfall 
amount is observed in the southeast (39–39.5°S, 72.5–71.5°E) about 2500 mm per year, 
and the lowest rainfall amount of about 800 mm per is observed in the west coast (37–
37.5°S, 73–73.50°E). HadCM3 downscaled by PRECIS underestimates rainfall levels in 
the north (by about 10 %, i.e. −10 mm per month) and overestimates them in the south 
(by about 30 %, i.e. +50 mm per month) for neutral conditions. A similar pattern occurs 
during El Niño and La Niña years, where the model underestimates northern and over-
estimates southern rainfall rates by about the same values (Fig. 6b–d).

Correction of the baseline and projected climatology

PRECIS shows unsystematically biased estimates when reproducing ENSO effects on 
rainfall (“Evaluating DGF_PRECIS dataset” section). Thus, we do not construct a cor-
rected projection for the different ENSO phases, but exclusively for general conditions, 
i.e. without ENSO discrimination.

We compared both bias correction methods to evaluate which would afford us a bet-
ter estimate of what might occur in the future. Grounded on this comparison, quantile 
mapping produces the most fitted results, indicating a better Euclidean distance (and 
therefore better visual balance) of histograms with respect to in situ data: 23 mm (Fig. 7). 
These results are in line with other authors who compare different methods of bias cor-
rection and report significant improvement in RCM performance by using quantile 
mapping (Chen et al. 2013; McGinnis et al. 2015; Fang et al. 2015). Even so, we report 
here the consequences of both methods so as to show that even though one is plainly 
more adept than the other, the two are corroborated in the sense of what the future of 
rainfall in the region may be.

Fig. 4 a Mean precipitation for In‑Situ and projected by DGF‑PRECIS values under all ENSO conditions and 
for global simulation (All). Error bars represent standard error (over) and 95 % significance values (under).  
b Global histogram comparing DGF PRECIS and In‑Situ rainfall
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Both corrected scenarios show a reduction in annual precipitation, which is higher 
under A2 (a reduction of 30.4 %, i.e. −458 ± 42. 4 mm per year for CBCR and 43.8 %, 
i.e. −655.9 ±  27. 4  mm per year for CBQM) than under the B2 scenario (15.5  %, i.e. 
235 ± 87 mm per year for CBCR and 19.19 %, and −287 ± 42 mm per year for CBQM). 
In both scenarios and cases, the corrected values represent a reduction in precipitation 
larger than the original uncorrected projection simulation (24.3 and 7.6 %, i.e. −363.9 
and −113.6 mm per year for A2 and B2, respectively); see Fuenzalida et al. 2006 (Fig. 8; 
Table 2).

Fig. 5 In‑situ and simulated (HadCM3 downscaled by PRECIS downscaled) monthly rainfall for all‑data (a), La 
Niña condition (b), neutral condition (c) and El Niño condition (d)

Fig. 6 Spatial patterns of annual accumulated precipitation of measured (in situ) (left) and HadCM3 down‑
scaled by PRECIS projection over the base line period (1962–1991) (right), considering a Climatology, b La 
Niña condition, c Neutral condition and d El Niño condition
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For CBQM, the reduction in precipitation is higher for summer (86 %, i.e. −113.4 mm/
season for A2; 91 %, i.e. −119.5 mm for B2) and spring (75 %, i.e. −216.9 mm/season for 
A2; 52 %, i.e. −150.3 for B2) than for winter (25 %, i.e. −170.1 mm/season under A2; 
7 %, i.e. −51.6 mm/season for B2) and autumn (23 %, i.e. −90.3 mm/season for A2, 10 %, 
i.e. −37.2 mm/season for B2) (Fig. 9). Similar results are obtained when CBCR methods 
are used. These corrected scenarios show that the reduction in precipitation is higher 
for summer (37 %, i.e. −48.6 mm/season for A2; 45 %, i.e. −58.8 mm for B2) and spring 
(51 %, i.e. −145.8 mm/season for A2; 29 %, i.e. −84.3 for B2) than for winter (33 %, i.e. 
−231.5 mm/season under A2; a not significant increase of 1.6 %, i.e. +11.16 mm/season 
for B2) and autumn (24 %, i.e. −94.0 mm/season for A2, 7 %, i.e. −28.8 mm/season for 
B2) (Fig. 9; Table 2).

Although both corrected methods are consistent in projecting reductions in rainfall, 
CBCR projects lower reductions for autumn and winter than the original uncorrected 
DGF-PRECIS (11  %, i.e. −43.5  mm/season and 14  %, i.e. −102.4  mm/season for A2 
autumn and winter, respectively, and 4 %, i.e. −15 mm/season and 6 %, i.e. −42 mm/
season month for B2 Autumn and winter, respectively) and higher for summer and 
spring (52 %, i.e. −104.7 mm/season, and 58 %, i.e. −28.5 mm/season for A2 summer 
and spring, respectively, and 30 %, i.e. −59.7 mm/season and 65 %, i.e. −30 mm/season 
for B2 summer and spring, respectively) (Fig. 9a). Instead, CBQM projects higher reduc-
tions for all seasons than the original projection for A2 (11 %, i.e. −43.5 mm/season and 
14 %, i.e. −102.4 mm/season for autumn and winter, respectively, 52 %, i.e. −104.7 mm/
season, and 58 %, i.e. −28.5 mm/season for summer and spring, respectively), higher for 

Fig. 7 Histogram of modeled, in situ, and corrected (quantile mapping and coefficient rates) rainfall

Fig. 8 Original and Corrected monthly mean rainfall values (1962–1981), A2 and B2 scenarios: a Baseline,  
b In‑situ and CBCR and c In‑situ and CBQM
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summer, spring, and autumn of B2 (30 %, i.e. −59.7 mm/season and 65 %, i.e. −30 mm/
season, and 6 % i.e. −42 mm/season for summer, spring, and autumn, respectively), and 
less winter of B2 (and 4 %, i.e. −15 mm/season) (Fig. 9a; Table 2).

Corrected projections suggest lower rainfall during the winter and autumn, which 
may explain the lower annual accumulated values; however, the main differences are 
observed in the summer. Based on the histograms, we observed that both projections 
increase the frequency of months with lower rainfall (less than 100 mm per month) from 
57.17 to 68.52 % for A2, from 57.17 to 64.12 % for B2, respectively, (CBCR) 57.17–72.5 % 
for A2, and from 57.17 to 64.18 % for B2, respectively (for CBQM) during the time span 
(1961–1991). In both frequency analyses, we used the corrected database with respect to 
the in situ values (Fig. 9).

We notice that the spatial pattern of precipitation predicted by the climate change 
scenarios shows a general decrease in the whole region, but higher for the northern 
coastal precipitations (about 37.5°S, 73°W). This is observed regardless of the correction 
method, but there are differences in some places. In CBCR, an increase is observed (by 
about 120 mm per year under scenario A2 and 300 mm per year under B2), whereas in 
CBQM, this zone shows a small decrease (by about 100 mm per year) under the B2 sce-
nario. On the other hand, CBCR shows that coastal precipitation (left side of each map) 
will decrease (about 700 mm per year under A2 and 400 mm per year under B2) along 
with CBQM, which projects a decrease by about 700 mm per year under scenario A2 
and 500 mm per year under B2 (Fig. 10).

Furthermore, both correction methods shows an important decrease in the south of 
about 500 mm per year under A2 and an increase of 100 mm per year under B2; this 
increase is observed only in the mountain zone (right side of the map) in CBCR and in 
all zones in CBQM (Fig. 10). This area usually experiences the highest levels of precipi-
tation and is where important agricultural centers are located (Peña and Romero 1977; 
INE 2010).

Table 2 Change observed under both climate change scenarios

Original refers to the original DGF-PRECIS downscaled rainfall (mm per month) instead of In-Situ referring to the base line 
rainfall (mm per month). CBCR is referred to correction based on coefficient rates and CBQM is referred to correction based 
on quantile mapping

Month In‑situ Original B2 CBCR B2 CBQM B2 Original A2 CMCR A2 CBQM A2 Original baseline

Jan 43.2 10.6 18.68 0.97 16 26.16 3.8 35.4

Feb 39.8 23.2 31.51 10 24.5 31.21 11.6 41.4

Mar 43.4 53.9 34.03 41.1 45.6 28 56.1 58.6

Apr 100.3 118.1 84.51 94.4 101.7 72.42 101.7 132

May 242.1 228.6 226.34 221.6 196.7 194.97 134.1 216.2

Jun 259 267.3 215.19 268.5 228.9 185.49 163.3 308.3

Jul 254.3 247.8 229.08 259.9 209.7 192.62 163.5 273.4

Aug 180.6 220.1 197.86 176.6 158.6 145.6 135.5 182.4

Sep 117.3 119.6 93.72 98.4 77.3 60.54 41 156.4

Oct 99.9 57.3 68.87 33.1 39.7 47.67 24.6 118.9

Nov 68.7 24.3 39.11 4.1 20.2 32.01 3.4 69.4

Dec 48.5 12.7 22.65 0.96 14.3 25.46 2.6 42.6

SUM 1497 1383.5 1265.34 1209.6 1133.1 1042.15 841.1 1635
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We compare the climate pattern expected for the climate change scenarios with the 
different ENSO phases. Our results show that the expected climate patterns are closer to 
La Niña conditions than those observed in the neutral or El Niño phases; however, this 
pattern is even more extreme under the climate change scenarios, especially in spring 
and summer (Fig. 11). Eventually, in A2 scenarios, the final quantity of precipitation the-
oretically reaching the area is less than the one experienced on average during La Niña 
years from 1961 to 1991, which is a substantial reduction. This is regardless of the cor-
rection method, but CBQM marks the differences (Fig. 11d).

AR5 comparison

AR5 simulations were bias-corrected by both CBCR and CBQM methods following the 
same methodology used for A2 and B2 scenarios (Table 3). Nonetheless, we only report 
the CBQM results, following a better rainfall distribution correspondence than CBCR, 
as both methods present analogous effects. A reduction in the rainfall amount is pro-
jected, but are there real differences between the corrected DGF-PRECIS and corrected 
AR5 projection scenarios? For example, let us compare AR5′s RCP45 with the TAR’s B2 
scenario. If we consider the whole region, the corrected AR5 projections show similar or 
comparable effects to the TAR. It decreases with respect to in situ climatology by about 
−298.7 mm per year (−20.27 %) for AR5′s RCP45, compared to a decrease of −287 mm 

Fig. 9 Simulated seasonal rainfall (a), CBCR corrected B2 difference amount frequency (base line period—
projected) (b), CBCR A2 difference amount frequency (base line period—projected) (c), CBCR corrected B2 
difference amount frequency (base line period—projected) (d) and CBQM A2 difference amount frequency 
(base line period—projected) (e)
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per year (−19.19 %) observed in the TAR’s B2 scenario. Likewise, we noticed the same 
when we compare A2 with RCP85 scenarios, although the corrected DGF-PRECIS 
shows a reduction in precipitation (−655.9 mm per year, −43.8 %) larger than the cor-
rected RCP85 (−447.2 mm per year, −30.38 %).

AR5 also coincides with TAR as both databases project comparable effects in terms 
of mm/season, but lesser in terms of percentage during winter and summer. Thus, for 
RCP45, rainfall decreases by about 153.9  mm (−22.3  %) during the winter and only 

Fig. 10 Spatial patterns of precipitation for values under a current (baseline epoch, 1961–1991), b B2 
(2070–2100) and c A2 (2070–2100) scenarios, and d La Niña base line condition. In (a) and (d), left map shows 
the original PRECIS projection and right the corrected values. In (b) and (c) left map shows the original PRECIS 
projection, center map shows the CBCR projection and right map shows the CBQM projection

Fig. 11 DGF‑PRECIS scenarios compared with a El Niño, b Neutral (non ENSO) and c La Niña. d Yearly cumu‑
lated
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−46.1 mm during the summer, lesser in mm and also equivalent to 64.8 % of the total 
rainfall received during this season. This is also the case for TAR B2, where the win-
ter does not show a significant increase (1.6 %, i.e. about 11.16 mm), while a decrease 
of 119.5  mm (−91  %) takes place during the summer (Fig.  12). The same is observed 
for RCP85 and A2 scenarios; for RCP85 during the winter, rainfall decreases by about 
108.7 mm (15.7 %), while it is approximately 78.8 mm (62.3 %) during the summer. The 
decrease is approximately 231.5 (33 %) and 113.4 mm (86 %) for the winter and summer, 
respectively, for A2.

Table 3 Changes observed under AR5 change scenarios

Original refers to the original AR5 rainfall scenarios before correction (mm per month), while In-Situ refers to the baseline 
rainfall (mm per month)

Month In‑situ Original Corrected 
RCP26

Original Corrected 
RCP45

Original Corrected 
RCP85RCP26 RCP45 RCP85

Jan 43.2 26.6 25.4 20.6 21.7 19.1 13.9

Feb 39.8 41.1 39 24.5 24.9 19.8 13.4

Mar 43.4 65.1 60.2 44.2 43.4 45.6 35.7

Apr 100.3 116.5 106.2 106.2 97.7 109.5 84.6

May 242.1 272.5 244.2 218.3 192.9 149.4 122.3

Jun 259 310 277 213.9 189.8 266.0 236.4

Jul 254.3 234 210.5 248.6 216.8 246.8 217.3

Aug 180.6 176.7 159.8 143.8 129.4 153.7 127.5

Sep 117.3 135 122.7 95.5 88.6 95.7 75.5

Oct 99.9 105.9 96.7 95.9 88.9 73.4 55.9

Nov 68.7 52.6 49.2 48.2 47.2 32.0 23.2

Dec 48.5 41.2 38.8 33.4 33.7 28.7 20.4

SUM 1497 1577 1429.5 1293 1175 1240 1026

Fig. 12 Monthly rainfall projections comparison between TAR (lines) and AR5 (bars) projections for a North‑
ern region, b Southern region, c whole region and d whole year
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The Araucanía region is only covered by two AR5 pixels, separating the region into two 
zones: North and South (Fig. 1). Therefore, if we were to analyze these scenarios depend-
ing on northern and southern regions, we would observe a lesser effect for RCP45 in 
the northern region (decreasing by about 194.4  mm, i.e. 14.8  %) than in the southern 
region (decreasing by about 403.1 mm per year, i.e. 24.7 %), both with respect to the cor-
rected baseline climatology. The same is observed for RCP85, where a larger decrease 
in rainfall takes place along the southern pixel (−803.1 mm, approximately 49 %) than 
northern pixel (−92 mm, approximately 7 %). Within the TAR scenarios, the inverse pat-
terns take place: B2 projects a decrease by about 386.35 mm per year (−29.4 %) in the 
North and practically no effect (even an increase of 14 mm, i.e. 0.9 %) in the southern 
region. For A2, the same pattern takes place, but the effect is less important: −660 mm 
(i.e. −50.27 %) over the northern and −592 mm (i.e. −36.21 %) over the southern pixel.

Conclusion
Due to the expected climate change, we face the challenge of understanding what its 
effect will be on regional climates. IPCC projections were downscaled to higher spa-
tial resolutions by using dynamical downscaling (Seth and Rojas 2003; Wilby et  al. 
2004; Conde et  al. 2011). Nevertheless, these must be validated (Räisänen 2007; Refs-
gaard et al. 2014; Monier et al. 2014), and if necessary, be locally corrected (Bakker et al. 
2014), in order to make an accurate climatic basis. Thus, from a large number of in situ 
time series, we first created a precipitation database to obtain a climatology. Second, we 
described their variability with respect to ENSO events. It was also possible to compare 
and correct the present historical variability produced by the model with the local real-
ity. This correction was later applied to each of the dynamical downscaling of future pro-
jections, allowing these to properly make comparisons with the present conditions. It is 
important to state that the DGF PRECIS projections are the main approach currently 
used in Chile to define public policies under future climatic changes.

The region’s climatology shows that under Neutral (not ENSO years), an annual rain-
fall takes place of 1750 ± 29 mm per year with a positive gradient from the Northwest 
to the Southeast of about 4.8 mm km−1. Higher rainfall occurs during the winter, with 
259 mm per month, and lower rainfall levels occur during the summer, with 53 mm per 
month. Months without rainfall occur with a frequency of 2.4 % and are concentrated in 
summer. Our climatology is consistent with older decryptions performed for this zone, 
such as Peña and Romero (1977) or Rouanet (1983).

Depending on the phase of the ENSO year, the amount of annual accumulated precipi-
tation either increases (during El Niño years, by about +134 mm per year) or decreases 
(during La Niña years, by about −132  mm per year) in comparison to Neutral years. 
These effects are statistically significant (ANOVA test, 95 % of significantly level). Geo-
graphically speaking, a La Niña year is characterized by low precipitation levels in the 
winter in the southeast (39°S, 72°W), a region where it generally rains the most, and 
higher levels of precipitation in the northwestern area (37°S, 73°W). This pattern is 
reversed during an El Niño year.

When comparing the in situ climatology with the one from the dynamical downscaled 
historical run, our study shows that projections can overestimate precipitation levels 
for the end of the twenty-firs century (2070–2100). Thus, taking into account the rated 
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overestimation of precipitation carried out during 1961–1991, both A2 and B2 scenarios 
were corrected.

After the corrections, the conservative critical scenario—in this case B2—predicts a 
reduction in annual precipitation of 19.19 %, equivalent to 287 ± 42 mm per year less 
than a current Neutral year. For the corrected A2 scenario, a decrease was predicted in 
annual precipitation of about −665.9 ± 27.4 (−43.8 %), less than a present-day neutral 
year. Seasonally, this reduction is higher during summer (86 and 91 % for A2 and B2, 
respectively) and is predicted to affect the whole region, except the southern region for 
B2. We highlight that in both scenarios, the final amount of precipitation is less than the 
one received on average during La Niña years from 1961 to 1991, which is a significant 
decrease.

The analysis of the AR5 impact confirms the DGF-PRECIS scenarios. The corrected 
AR5 projections show similar effects to the PRECIS with respect to in  situ climatol-
ogy in about −298.7  mm per year (−20.27  %) for AR5′s RCP45 and −665.9  mm per 
year (−43.8 %) for the RCP85. The predicted changes in precipitation will have a dra-
matic impact on several socioeconomic fields, especially agribusiness. For example, the 
combination of changes in soil–plant systems (Clark and Lynch 2009) and an increased 
probability of flooding (Rosenzweig et al. 2002) may cause additional crop damage. Fur-
thermore, accelerated population growth (INE Araucanía 2015) will increase pressure 
on supplies for freshwater. Therefore, improved projection is crucial if the impact of 
climate change is to be mitigated. Correction of dynamically downscaled projections is 
needed, especially due to the level of bias (Baigorria et al. 2008). Few studies have been 
carried out in this geographical area. Performed over an area located at about the same 
latitude on the Pacific coast of the USA, a comparison of quality of different simulations 
gave good results (Doherty et al. 2003). It is noteworthy that the Hadley Center model 
(HadCM3) was originally selected for PRECIS downscaling because of its correct rep-
resentation of South American climate variability (Seth and Rojas 2003). In addition, 
the new version used here for AR5 projection is the model that shows the highest cor-
relation with Southern American rainfall (Galicia and Camilloni 2014). Finally, Hadley 
Center models are applied in several studies in order to model the climate impact in 
South America (Nóbrega et al. 2011; Cavalcanti and Shimizu 2012; Chou et al. 2014).

Lastly, since dynamically downscaled projections at a high resolution from AR5 sce-
narios in the region are not yet available, we do not know the impact of the dynamical 
physical downscaling on the amount of precipitation (as was the case with TAR DGF 
PRECIS). This impact could be significant since as an example, a high resolution rep-
resentation of the rainfall processes in the coastal mountains and the Andes moun-
tain range can help to get an effect on the amount of local rainfall when in situ data is 
unavailable locally. It is relevant to next simulate how a dynamic projection and later 
correction would have been. This is feasible, assuming that the dynamic downscaling 
performed during the TAR DGF PRECIS experience is ideally repeated with the AR5.

Thus, the TAR HadCM3 corrected scenario (original grids at 2.5) projections show 
1497 mm per year (corrected baseline or in situ), 1386 mm per year (B2), and 1269 mm 
per year (A2). That is, a loss of 111 mm per year (7.4 %) for B2 and 228 mm per year 
(15.2 %) for A2. The corrected TAR DGF-PRECIS shows 1497 mm per year (corrected 
baseline or in  situ), 1209.6  mm per year (B2), and 847.8  mm per year (A2), meaning 
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−287 mm per year (19.19 %) for B2 and −655.9 mm per year (43.8 %) for A2. Indeed, 
the dynamical downscaling process doubled the amount of precipitation loss (in mm per 
year) for both scenarios.

Now, if we take into account the possible dynamical downscale effect for the corrected 
projections (using then PRECIS model) by CBQM, we would get 1127  mm per year 
(for RCP45) and 610  mm per year (for RCP85), a precipitation loss of −369  mm per 
year (24.66 %) for RCP45 and −817 mm per year (54.58 %) for RCP85. Both values are 
higher by 100 mm per year than the largest amount of precipitation loss obtained with-
out dynamic downscaling, AR5, or the TAR corrected DGF-PRECIS projected scenarios 
(see above).

We summarize that the amount of precipitation loss over the last decades of the 
twenty-first century could be as high as close to 50  % of the total amount of water 
received, which is certainly a huge amount of water loss for regions where a large part 
of the activity is related to water-dependent economies (forestry, agriculture, tourism). 
These numbers are simply an initial guess as they should be certified by precisely effec-
tuating a higher resolution dynamic downscaling modeling. This is a step the team is 
already executing, all the same, with a WRF model (Skamarock et al. 2005) instead of 
PRECIS. In addition, we are also comparing statistical downscaling with dynamical 
downscaling methodologies.

 Finally, the generated database identifies the main uncertainties and improves the cur-
rent provided information for making policies and climate-change adaptation strategies. 
Thus, we expect that this work will be an important step to support a decision mak-
ing system and design suitable countermeasures to help the Araucanía Region adapt for 
future climate conditions.
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